研究生: |
曾德軒 Tzeng, Te-Hsuen |
---|---|
論文名稱: |
高介電常數介電層在矽與矽鍺基板的電性研究 The study of electrical characteristics in Si and SiGe MOSFET device with higher-k dielectric |
指導教授: |
張廖貴術
Chang-Liao, Kuei-Shu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 高介電常數 矽鍺 |
外文關鍵詞: | HIGH-K SiGe |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善MOSFET的性能,元件的尺寸被要求越來越小,在未來CMOS技術中等效氧化層厚度(EOT)甚至被要求縮小到1.0 nm以下。然而,當二氧化矽縮小到1.5nm以下時穿隧電流變得相當顯著,導致有很大的汲極漏電流產生。High-k介電層可用來減少這個漏電流發生,因為較厚的介電層可以減少電子或電洞穿越閘極介電層的可能,使得穿隧電流可以被減少。
第一部份我們在Si基板上用ALD沉積HfO2作為介電層,並在上面鍍上1nm的Ti Cap希望藉由Ti的往下擴散並與Hf鍵結使介電常數大幅提升,藉此來微縮元件的EOT,此外這部分也採用Gate Last來完成元件。有Ti Cap的元件在Subthreshold Swing部分可達65mv/dec,此外在Gm等許多基本特性都超過單層HfO2的元件。
第二部份我們使用UHVCVD堆疊矽鍺虛擬基板,並在上面做高介電常數介電層的堆疊。首先對氮氧化鉭堆疊於氧化鉿元件進行研究,其結果發使用TaON/HfO2作為介電層之元件有較大的飽和汲極電流、最大轉導值。另外在可靠度方面有TaON堆疊之元件經Stress後也有較佳的可靠度。但有經過PDA的元件則反之。接著也對氮氧化鈦堆疊於氧化鉿的元件進行研究,可以看到元件在許多基本電性上也有進步,但在閘極漏電流以及可靠度部分卻很不理想,可能是鈦金屬擴散程度對溫度非常敏感有關。在載子遷移率部分,使用矽鍺虛擬基板的元件也有得到明顯的提升,PMOS載子遷移率為107cm/V-s;而使用較高介電常數堆疊的元件在遷移率部分普遍都有稍微的衰退,可能跟介電常數高的材料有較嚴重的離子極化,因此RPS(Remoto Phonon Scattering)較嚴重。
1.The effects of Ti cap stack on Hf base dielectrics in Si MOSFET.
Effects of Ti cap stack HfO2 for higher-k MOSFET.
The influence of electrical characteristics with / without PDA.
The influence of Ti cap stack HfO2 for N、P MOSFET
2.The effects of TaON stack on Hf base SiGe MOSFET.
Effects of TaON stack HfO2 for SiGe MOSFET.
The influence of electrical characteristics with / without PDA.
3.The effects of TiON stack on Hf base SiGe MOSFET.
Effects of TiON stack HfO2 for SiGe MOSFET.
The influence of electrical characteristics with / without PDA.
[1] Iternational Technology Roadmap for Semiconductor, 2003 edition.
[2] J. H. Stathis, et al, IEEE IEDM, Vol. 71, p. 167-170, 1998
[3] A. I. Kingon, et al, Nature 406, p. 1032-1038, 2000
[4] M. Houssa, et al, Material Science and Enginerring R, p. 37-85, 2006
[5] Jack C.Lee, et al., IEEE EDS Vanguard Series of Independent Short Course, p.202, 2001
[6] Nan Lu,The University of Texas at Austin, Ph.D.,p.12 ,2006
[7] S, Saito, et al., IEEE IEDM, p. 797-800, 2003
[8] R. People , et al., App. Phys. Lett, Vol. 47, p. 322, 1985
[9] R. Zhang, North Carolina State University, Ph. D., p.1-97, 2006
[10] http://www.sp.phy.cam.ac.uk/~SiGe/PhDs%20in%20SiGe%20Research%20at%20Cambridge.html
[11] Hiroaki Arimura, et al., Appl. Phys. Lett. 92,212902 ,2008
[12] C. Claeys, et al., IEEE IEDST, 2007
[13] Koji Kita, et al.,Jpn.J.Appl.Phys, Vol. 47, p. 2349-2353, 2008
[14] T. Takahashi, et al., IEEE IEDM, p. 697-700, 2007
[15] S. Migita, et al., IEEE VLSI Tech. Dig. Tech., p.152-153,2008
[16] Yoshiki Kamata, Materials today, Vol. 11,p.30-38 ,2008
[17] Sachin Joshi, et al.,IEEE Electron Device Letters, Vol. 28, p. 308-311, 2007
[18] W. P. Bai, et al., IEEE Electron Device Letters, Vol. 26, p.378-380, 2005
[19] S. Petitdidier, et al., Thin Solid Films,Vol. 476, p. 51-58, 2005
[20] D.C. Houghton, J. Appl. Phys, Vol. 70, p. 2136-2151, 1991
[21] Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
[22] H.-S. P. Wong, IBM J. Res. & Dev, Vol. 46, p. 133-168, 2002
[23] W. J. Zhu et al., IEEE Electron Device Letters, Vol.25, NO.2, pp.89-91, 2004
[24] S. I. Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, pp.2357-2362, 1994
[25] R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, pp.109-115, 1995
[26] T.P.Ma, IEEE Trans. Electron Device, vol. 45, p.680, March 1998.
[27] Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, p.1439
[28] C. D. Young, et al., IEEE Device and Materail Reliability, Vol.6,p.123-131,2006.
[29] S. Mahapatra, et al., IEEE Electric Device, Vol. 53, pp.1583-1592, 2006.
[30] S. H. Bae, et al., IEEE Electron Device Lett. , vol 24, no. 9, 2003
[31] G.D.Wilk, et al., Journal of Applied Physics, vol.89,p.5243-5275,2001
[32] K. Yamamoto, et al., Appl. Phys. Lett. pp.2053-5, Vol 81, 2002
[33] C.L. Cheng, et al., Appl. Phys. Lett. Vol86, p.212902-3, 2005
[34] C.S. Kang, et al., IEEE Transactions on Electron Devices, Vol 51, p .220-7, 2004
[35] X. Wang, et al., IEEE Transactions on Electron Devices, Vol51,p.1798-4, 2004
[36] B. Djezzar, Symp. Nuclear Science, p.234-9, 2001
[37] D.M. Fleetwood, IEEE Transcactions on Nuclear Science, Vol 43, p.779-6, 1996
[38] X. Yu, et al., IEEE Electron Device Lett. Vol25,p.501-3, 2004
[39] S. Mudanai, et al., IEEE Electron Device Lett. ,Vol 23,p.728-0,2002
[40] D.K. Schroder, John wiley & Sons, p.337-8,1998
[41] P.O. Hahn, et al., J.Vac. Sci. Technol. A, Vol 2, p. 574-3, 1984
[42] T.Yamanka, et al.,IEEE Electron Device Lett., Vol 17, p.178-0, 1996
[43] W.K. Chim et al., J. Appl. Phys., Vol93, p.4788-3, 2003
[44] Heyns, et al., VLSI Technology, Systems, and Applications, International Symposium, p.247, 2003
[45] J.F. Conley, et al., Electrochem. and Sol. State Lett., p.108-112, 2002
[46] P.O. Hahn, et al., J.Vac. Sci. Technol. A, Vol 2, p. 574-3, 1984
[47] T.Yamanka, et al.,IEEE Electron Device Lett., Vol 17, p.178-0, 1996
[48] W.K. Chim et al., J. Appl. Phys., Vol93, p.4788-3, 2003
[49] Chia Ching Yeo, et al., IEEE Electron Device Letters, Vol. 26, NO. 10, 2005
[50] Erich Kasper et al., Thin Solid Films, Vol. 336, p. 319-322, 1998
[51] C.D. Young, et al., IIRW Final Report, 2005
[52] C.X.Li, et al., Microelectronics Reliability, Volume 48, Issue 4, P. 526-530 , 2008
[53] C.X.Li, et al., Solid-State Electronics, Volume 54, Issue 7, P. 675-679 , 2010
[54] J. Huang, et al. VLSI ,3A-1 p.34-35 ,2009
[55] O. A. Mironov, et al. IEEE European Solid-State Device Research,p.557-560 ,2004