簡易檢索 / 詳目顯示

研究生: 沈曉萱
Shen, Hsiao Hsuan
論文名稱: 碳材的表面電化學修飾對有機系超高電容表現之研究
Improving capacitive performance of activated carbon by electrochemical modification in organic-based supercapacitors
指導教授: 胡啟章
Hu, Chi Chang
口試委員: 溫添進
Wen, Ten Chin
鄧熙聖
Teng, Hsi Sheng
杜正恭
Duh, Jenq Gong
曾堯宣
Tseng, Yao Hsuan
蔡德豪
Tsai, De Hao
蔡林仁
Tsai, Lin Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 126
中文關鍵詞: 超級電容器有機電解液活性碳電化學修飾非對稱組裝
外文關鍵詞: Supercapacitor, Organic electrolyte, Activated carbon, Electrochemical modification, Asymmetric design
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於碳材之有機系超高電容器之開發,目的為利用碳材之表面修飾及非對稱組裝系統,將操作電位提高,進而達到超級電容器之比能量提升。
    本研究利用電化學進行單一商用活性碳材之開發,並藉由分析其材料之特性界定其電化學行為之表現。本文第四章節中,旨於探討未修飾之商用活性碳之操作電位窗,實驗利用學術與工業界皆普遍利用之循環充放電測試法及定電位極化法進行電化學測試,並搭配電化學阻抗頻譜圖以界定其操作電位窗,進而定義兩法於超級電容器壽命測試上之相對關係。於材料分析上,利用X光能譜儀標定電解質中之特定元素之增長作為操作電位之界限指標。第五章則利用與前章節使用之同一碳材,開發一電化學表面修飾法進行電極材料改值,此法利用多次循環充放電而能增加其於有機系電解液之電容,並同時展延其電位窗以提升其比能量。並藉由X光能譜儀和掃描式電子顯微鏡分析電極表面之修飾狀態,再進一步利用電化學阻抗頻譜圖確立修飾效果於超級電容器之影響性。
    於後一章節中,主要延續前章之電化學修飾法之探討。實驗利用循環充放電測試法及定電位極化法之相對關係,將循環充放電之關係量化使定電位極化等效運用,以達修飾材料並縮短製程時間之效果。並藉由掃描式電子顯微鏡和臨場拉曼進行材料分析,以了解材料於製程中之變化。第七章則根據碳材之不同特性歸納其電化學行為差異,選用一商業奈米碳材作為正極材料,排除商用活性碳於有機電解液之正極電位窗限制,進行非對稱組裝測試。實驗說明此設計得一寬廣電位窗之非對稱電容器,而能大幅提高操作電位,因此,利用穿透式與掃描式電子顯微鏡、非臨場拉曼分析、X光能譜儀和比表面積測試,歸納奈米碳材與活性碳之性質差異。


    This study aims at enlargement of operating voltage of carbon-based electrochemical capacitors (ECs) in organic-based electrolyte (1M TEABF4/PC), it relatively leads to improving specific energy, and especially demonstrates the unique electrochemical modification (EM) of ECs.
    There are three parts in this work; criteria of activated carbons (ACs), capacitance enhancement of ACs and asymmetric cell consist of ACs and carbon black (CB). The operating cell voltage is developed from 2.1 V, 2.6 V to 3 V by electrochemical technique in these three parts. In first part, the combination of potential-stressed floating test and EIS analyses precisely determines the working potential window between -1.9 and 0.2 V (against Ag/AgNO3), which is a reliable method to efficiently define the working potential window. In this potential range, ECs exhibits about 6% capacitance loss during the charge-discharge test for 10,000 cycles at 0.5 A g-1 between 1.9 and 2.1 V. Then, a novel EM to enhance the specific capacitance (CS) and operating voltage of ACs was demonstrated in second part. This EM has been optimized by repeating 5 times of 100 charge-discharge cycles between -1.9 and 0.5 V (against Ag/AgNO3) in the fresh electrolyte. Moreover, the EM was evaluated by a series of consecutive floating tests from 0 V to 0.5 V (against Ag/AgNO3) each for 3050 seconds (s) with 100 mV as interval.
    The surface morphology of ACs was thereafter examined by scanning electron microscope, reveals a film-like material which was formed onto the surface of ACs electrode during EM. Moreover, a film-like material has been identified to contain N, B, and F by X-ray photoelectron spectroscopic measurements. Besides, the characteristics of vibrational modes of ACs were investigated by in situ Raman spectroscopy, which shows the D band peak position of activated carbon present a blue-shift due to the surface structure change. After EM process, an asymmetric supercapacitor (ASC) consisting of the above modified-AC positive electrode and an as-received AC negative electrode, which shows excellent charge-discharge stability from the 1.9 % decay in the cell capacitance after 10,000-cycle stability test at 5 A g-1 between 0 and 2.6 V. In third part, the upper limit of the double-layer potential window for the interface between propylene carbonate and CB with low defects but relatively high specific surface area is effectively extended from 0.1 to 1 V (against Ag/AgNO3), compared with AC. Accordingly, commercial CB and AC are respectively employed as positive and negative electrode materials to construct an advanced ASC with cell voltage reaching 3 V, which is very stable in 10000-cycle charge-discharge tests at 1 A g-1 between 2.7 and 3 V.

    Abstract ....................................................................................................... I 摘要 ........................................................................................................... III 謝誌 ............................................................................................................ V Chapter 1 Introduction and Objective ......................................................... 1 Chapter 2 Literature Review ....................................................................... 3 2-1 Introduction of Electrochemical Capacitors (ECs) ....................... 3 2-1-1 Specific Capacitance Enhancement of Electric Double Layer Capacitors (EDLCs) .................................................. 6 2-1-2 Specific Capacitance Enhancement of Redox Supercapacitors .................................................................. 10 2-1-3 Operating Voltage Enlargement of ECs ............................ 13 2-2 Application of Activated Carbons (ACs) in EDLCs ................... 16 2-2-1 Physical Properties of ACs in EDLCs ............................... 20 2-2-2 Capacitive Performance of ACs in TEABF4/PC ............... 26 2-3 Electrochemical Capacitance Enhancement of Carbon in ECs ... 32 Chapter 3 Experimental ............................................................................ 34 3-1 Material ........................................................................................ 34 3-2 Instruments .................................................................................. 35 3-3 Graphite Substrate Pretreatments ................................................ 36 3-4 Electrode Preparation .................................................................. 36 3-5 Electrolyte Preparation and Cell Design ..................................... 36 3-6 Electrochemical and Material Characterization .......................... 37 3-6-1 Electrochemical Characterization ..................................... 37 3-6-2 Material Characterization .................................................. 38 Chapter 4 Determination of the Upper and Lower Potential Limits of the ACs/PC System for EDLCs ...................................................... 41 4-1 Motivation.................................................................................... 41 4-2 Determining the Working Potential Window from the Potential-stressed Floating Test ................................................... 42 4-3 Potential Window Determination by Combination of Potential-floating and Electrochemical Impedance Spectroscopic Analyses ...................................................................................... 51 4-4 Full Cell Tests of Symmetric EDLCs with the Proposed Working Potential Window ........................................................................ 59 VIII 4-5 Summary ...................................................................................... 62 Chapter 5 Capacitance Enhancement of ACs Modified in the PC Electrolyte ................................................................................. 63 5-1 Motivation.................................................................................... 63 5-2 Determining the Potential Window for Electrochemical Modification ................................................................................ 64 5-3 Maximizing the Specific Capacitance of Modified AC .............. 72 5-4 The Full Cell Test of Asymmetric EDLCs .................................. 81 5-5 Summary ...................................................................................... 86 Chapter 6 Capacitance Enhancement of Activated Carbon Induced by Electrochemical Surface Modification in TEABF4/PC ............ 87 6-1 Motivation.................................................................................... 87 6-2 Time Period for Electrochemical Surface Modification ............. 88 6-3 Investigation of Specific Capacitance Enhancement .................. 90 6-4 In Situ Raman an Analysis .......................................................... 98 6-5 Summary .................................................................................... 102 Chapter 7 A Novel Design of High-voltage Asymmetric Electrical Double-layer Capacitors Using Propylene Carbonate ........... 104 7-1 Motivation.................................................................................. 104 7-2 Physical Characteristics of CB .................................................. 105 7-3 Electrochemical Characteristics of CB and the Performance of ASCs with AC ........................................................................... 109 7-4 Summary .................................................................................... 113 Chapter 8 Conclusions and Future Prospects ......................................... 114 8-1 Conclusions ............................................................................... 114 8-2 Future Prospects ........................................................................ 116 Reference ................................................................................................ 118 Acronym ................................................................................................. 125

    [1] R. Kötz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
    [2] J.H. Chae, G.Z. Chen, Electrochimica Acta, 86 (2012) 248-254.
    [3] F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Advanced Materials, 26 (2014) 2219-2251.
    [4] P. Simon, Y. Gogotsi, B. Dunn, Science Magazine, 343 (2014) 1210-1211.
    [5] S. Zhang, N. Pan, Advanced Energy Materials, 5 (2015).
    [6] B.E. Conway, J. Electrochem. Soc., 138 (1991) 1539-1548.
    [7] R. Kötz, M. Carlen, Electrochimica Acta, 45 (2000) 2483-2498.
    [8] E. Frackowiaka, F. Béguin, Carbon, 39 (2001) 937-950.
    [9] G.Z. Chen, K.C. Ng, J.H. Chae, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224 (2010) 479-503.
    [10] M. Jayalakshmi, K. Balasubramanian, International Journal of Electrochemical Science, 3 (2008) 1196-1217.
    [11] P. Simon, Y. Gogotsi, Nature materials, 7 (2008) 845-854.
    [12] S.H. Chae, Y.H. Lee, Nano Convergence, 1 (2014) 1-26.
    [13] L.L. Zhang, X.S. Zhao, Chemical Society reviews, 38 (2009) 2520-2531.
    [14] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nano letters, 11 (2011) 2472-2477.
    [15] J.P. Zheng, P.J. Cygan, T.R. Jow, Journal of the Electrochemical Society, 142 (1995) 2699-2703.
    [16] C.C. Hu, K.H. Chang, M.C. Lin, Y.T. Wu, Nano letters, 6 (2006) 2690-2695.
    [17] J.W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M.B. Sassin, O. Crosnier, Mrs Bulletin, 36 (2011) 513-522.
    [18] B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Springer Science & Business Media, 2013.
    [19] H.Y. Lee, J.B. Goodenough, Journal of Solid State Chemistry, 144 (1999) 220-223.
    [20] C.C. Hu, T.W. Tsou, Electrochemistry Communications, 4 (2002) 105-109.
    [21] H.Y. Lee, J.B. Goodenough, Journal of Solid State Chemistry, 148 (1999) 81-84.
    [22] A. Rudge, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Electrochimica Acta, 39 (1994) 273-287.
    [23] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Journal of Power Sources, 47 (1994) 89-107.
    [24] L.Z. Fan, Y.S. Hu, J. Maier, P. Adelhelm, B. Smarsly, M. Antonietti, Advanced Functional Materials, 17 (2007) 3083-3087.
    [25] M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon, 46 (2008) 1475-1488.
    [26] K. Jurewicz, K. Babeł, A. Źiółkowski, H. Wachowska, Electrochimica Acta, 48 (2003) 1491-1498.
    [27] N.D. Kim, W. Kim, J.B. Joo, S. Oh, P. Kim, Y. Kim, J. Yi, Journal of Power Sources, 180 (2008) 671-675.
    [28] C.O. Ania, V. Khomenko, E. Raymundo-Piñero, J.B. Parra, F. Béguin, Advanced Functional Materials, 17 (2007) 1828-1836.
    [29] Y.G. Patrice Simon, Nature materials, 7 (2008) 845-854.
    [30] H.S. Deyang Qu, Journal of Power Sources, 74 (1998) 99-107.
    [31] G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Chemical Physics Letters, 404 (2005) 53-58.
    [32] E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Béguin, Electrochimica Acta, 51 (2006) 2209-2214.
    [33] T. Kwon, H. Nishihara, H. Itoi, Q.H. Yang, T. Kyotani, Langmuir : the ACS journal of surfaces and colloids, 25 (2009) 11961-11968.
    [34] E. Frackowiak, Physical chemistry chemical physics : PCCP, 9 (2007) 1774-1785.
    [35] D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Advanced Functional Materials, 19 (2009) 1800-1809.
    [36] Y.H. Lee, K.H. Chang, C.C. Hu, Journal of Power Sources, 227 (2013) 300-308.
    [37] A.G. Pandolfo, A.F. Hollenkamp, Journal of Power Sources, 157 (2006) 11-27.
    [38] V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Applied Physics A, 82 (2006) 567-573.
    [39] K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, C.I. Chang, Journal of Power Sources, 196 (2011) 2387-2392.
    [40] C.C. Hu, J.C. Chen, K.H. Chang, Journal of Power Sources, 221 (2013) 128-133.
    [41] J.M. Li, K.H. Chang, C.C. Hu, Electrochemistry Communications,12 (2010) 1800-1803.
    [42] H.Y. Hsu, K.H. Chang, R.R. Salunkhe, C.T. Hsu, C.C. Hu, Electrochimica Acta, 94 (2013) 104-112.
    [43] C.C. Hu, C.T. Hsu, K.H. Chang, H.Y. Hsu, Journal of Power Sources, 238 (2013) 180-189.
    [44] A. Singh, A. Chandra, Scientific reports, 5 (2015).
    [45] Z. Fan, J. Yan, T. Wei, L. Zhi, G. Ning, T. Li, F. Wei, Advanced Functional Materials, 21 (2011) 2366-2375.
    [46] J.G. Wang, Y. Yang, Z.H. Huang, F. Kang, Carbon, 61 (2013) 190-199.
    [47] C. Schütter, T. Husch, M. Korth, A. Balducci, The Journal of Physical Chemistry C, 119 (2015) 13413-13424.
    [48] J.R. Miller, P. Simon, Science Magazine, 321 (2008) 651-652.
    [49] J. Fernández, M. Arulepp, J. Leis, F. Stoeckli, T.A. Centeno, Electrochimica Acta, 53 (2008) 7111-7116.
    [50] R.C. Bansal, J.B. Donnet, F. Stoeckli, New York: Marcel Dekker, (1988).
    [51] Roskill, London: Roskill Information Services Ltd, (1990).
    [52] A. Ahmadpour, D.D. Do, Carbon, 34 (1996) 471-479.
    [53] D. Lozano-Castello´, M.A. Lillo-Ro´denas, D. Cazorla-Amoro´s, A. Linares-Solano, Carbon, 39 (2001).
    [54] J.A. Maci´a-Agull´o, B.C. Moore, D. Cazorla-Amor´os, A. Linares-Solano, Carbon, 42 (2004) 1367–1370.
    [55] C. Yuhan, W. Qilin, P. Ning, G. Jinghua, P. Ding, Microporous and Mesoporous Materials, 109 (2008) 138-146.
    [56] D. Lozano-Castello´, M. Jorda´-Beneyto, D. Cazorla-Amoro´s, A. Linares-Solano, J.F. Burger, H.J.M.t. Brake, H.J. Holland, Carbon 48 (2010) 123-131.
    [57] S.T. Senthilkumar, B. Senthilkumar, S. Balaji, C. Sanjeeviraja, R.K. Selvan, Materials Research Bulletin, 46 (2011) 413-419.
    [58] M. Molina-sabio, F. Carturla, F. Rodriguez-Reinoso, Carbon, 33 (1995) 1180.
    [59] H. Benaddi, D. Legras, J.N. Rouzaud, F. Beguin, Carbon, 36 (1998) 306-309.
    [60] F.C. Wu, R.L. Tseng, C.C. Hu, C.C. Wang, Journal of Power Sources, 144 (2005) 302-309.
    [61] Y.J. Kim, B.J. Lee, H. Suezaki, T. Chino, Y. Abe, T. Yanagiura, K.C. Park, M. Endo, Carbon, 44 (2006) 1592-1595.
    [62] T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, Electrochemistry Communications, 10 (2008) 1594-1597.
    [63] W. Chen, H. Zhang, Y. Huang, W. Wang, Journal of Materials Chemistry, 20 (2010) 4773-4775.
    [64] J.V. Nabais, J.G. Teixeira, I. Almeida, Bioresource technology, 102 (2011) 2781-2787.
    [65] L. Wei, G. Yushin, Carbon, 49 (2011) 4830-4838.
    [66] J. Mi, X.R. Wang, R.J. Fan, W.-H. Qu, W.-C. Li, Energy & Fuels, 26 (2012) 5321-5329.
    [67] X. He, R. Li, J. Qiu, K. Xie, P. Ling, M. Yu, X. Zhang, M. Zheng, Carbon, 50 (2012) 4911-4921.
    [68] C. Peng, X.b. Yan, R.t. Wang, J.w. Lang, Y.j. Ou, Q.j. Xue, Electrochimica Acta, 87 (2013) 401-408.
    [69] H. Zhong, F. Xu, Z. Li, R. Fu, D. Wu, Nanoscale, 5 (2013) 4678-4682.
    [70] W. Zhang, Z.H. Huang, Z. Guo, C. Li, F. Kang, Materials Letters, 64 (2010) 1868-1870.
    [71] W. Huang, H. Zhang, Y. Huang, W. Wang, S. Wei, Carbon, 49 (2011) 838-843.
    [72] S. Zhao, C.Y. Wang, M.M. Chen, J. Wang, Z.Q. Shi, Journal of Physics and Chemistry of Solids, 70 (2009) 1256-1260.
    [73] B. Xu, Y. Chen, G. Wei, G. Cao, H. Zhang, Y. Yang, Materials Chemistry and Physics, 124 (2010) 504-509.
    [74] D. Qu, H. Shi, Journal of Power Sources, 74 (1998) 99-107.
    [75] K.S. Sing, Pure and applied chemistry, 57 (1985) 603-619.
    [76] H. Shi, Electrochimica Acta, 41 (1996) 1633-1639.
    [77] G. Salitra, A. Soffer, L. Eliad, Y. Cohen, D. Aurbach, Journal of the Electrochemical Society, 147 (2000) 2486-2493.
    [78] C. Lin, J.A. Ritter, B.N. Popov, Journal of the Electrochemical Society, 146 (1999) 3639-3643.
    [79] E. Raymundo-Piñero, K. Kierzek, J. Machnikowski, F. Béguin, Carbon, 44 (2006) 2498-2507.
    [80] H. Tamai, M. Kouzu, M. Morita, H. Yasuda, Electrochemical and solid-state letters, 6 (2003) A214-A217.
    [81] C. Moreno-Castilla, Carbon, 42 (2004) 83-94.
    [82] W. Shen, Z. Li, Y. Liu, Recent Patents on Chemical Engineering, 1 (2008) 27-40.
    [83] Y. El-Sayed, T.J. Bandosz, Journal of colloid and interface science,273 (2004) 64-72.
    [84] P.E. Fanning, M.A. Vannice, Carbon, 31 (1993) 721-730.
    [85] T. Otowa, Y. Nojima, T. Miyazaki, Carbon, 35 (1997) 1315-1319.
    [86] M.J.B. Evans, E. Halliop, J.A.F. MacDonald, Carbon, 37 (1999) 269-274.
    [87] J.P. Chen, S. Wu, K.H. Chong, Carbon, 41 (2003) 1979-1986.
    [88] S.A. Dastgheib, T. Karanfil, W. Cheng, Carbon, 42 (2004) 547-557.
    [89] D. Qu, Journal of Power Sources 109 (2002) 403-411.
    [90] B.E. Conway, W. Pell, T. Liu, Journal of Power Sources, 65 (1997) 53-59.
    [91] M. Ue, K. Ida, S. Mori, Journal of the Electrochemical Society, 141 (1994) 2989-2996.
    [92] M. Endo, Y. Kim, H. Ohta, K. Ishii, T. Inoue, T. Hayashi, Y. Nishimura, T. Maeda, M. Dresselhaus, Carbon, 40 (2002) 2613-2626.
    [93] B. Fang, Y. Wei, K. Maruyama, M. Kumagai, Journal of applied electrochemistry, 35 (2005) 229-233.
    [94] D. Zhai, B. Li, F. Kang, H. Du, C. Xu, Microporous and Mesoporous Materials, 130 (2010) 224-228.
    [95] C.X. Zhang, R. Zhang, B.l. Xing, G. Cheng, Y.b. Xie, W.M. Qiao, Z. Liang, X.Y. Liang, L.C. Ling, New Carbon Materials, 25 (2010) 129-133.
    [96] B. Xu, F. Wu, D. Mu, L. Dai, G. Cao, H. Zhang, S. Chen, Y. Yang, international journal of hydrogen energy, 35 (2010) 632-637.
    [97] D. Zhai, B. Li, H. Du, G. Wang, F. Kang, Journal of Solid State Electrochemistry, 15 (2011) 787-794.
    [98] R. Kötz, M. Hahna, R. Gallay, Journal of Power Sources, 154 (2006) 550-555.
    [99] O. Bohlen, J. Kowal, D.U. Sauer, Journal of Power Sources, 172 (2007) 468-475.
    [100] M. Hahn, A.W. rsig, R. Gallay, P. Nova´k, R.K. tz, Electrochemistry Communications, 7 (2005) 925-930.
    [101] S. Ishimoto, Y. Asakawa, M. Shinya, K. Naoi, Journal of The Electrochemical Society, 156 (2009) A563-A571.
    [102] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Journal of Power Sources, 60 (1996) 239-241.
    [103] T. Umemura, Y. Mizutani, T. Okamoto, T. Taguchi, K. Nakajima, K. Tanaka, Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, 3 (2003).
    [104] M. Hahna, R. Kötz, R. Gallay, A. Siggel, Electrochimica Acta, 52 (2006) 1709-1712.
    [105] F.P. Campana, M. Hahn, A. Foelske, P. Ruch, R. Kötz, H. Siegenthaler, Electrochemistry Communications, 8 (2006) 1363-1368.
    [106] P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, A. Wokaun, Electrochimica Acta, 55 (2010) 4412-4420.
    [107] K. Naoi, S. Ishimoto, J.-i. Miyamoto, W. Naoi, Energy & Environmental Science, 5 (2012) 9363-9373.
    [108] K. Naoi, Fuel Cells, 10 (2010) 825-833.
    [109] T. Kwon, H. Nishihara, H. Itoi, Q.H. Yang, T. Kyotani, Langmuir : the ACS journal of surfaces and colloids, 25 (2009) 11961-11968.
    [110] M. Takeuchi, K. Koike, T. Maruyama, A. Mogami, M. Okamura, DENKI KAGAKU, 66 (1998) 1311-1317.
    [111] M. Takeuchi, T. Maruyama, K. Koike, A. Mogami, T. Oyama, H. Kobayashi, Electrochemistry, 69 (2001) 487-492.
    [112] H. Zheng, K. Jiang, T. Abe, Z. Ogumi, Carbon, 44 (2006) 203-210.
    [113] M. Takeuchi, K. Koike, A. Mogami, T. Maruyama, United States Patent Application Publication (2001) US 20020039275 A20020039271.
    [114] H.E. Brouji, O. Briat, J.-M. Vinassa, N. Bertrand, E. Woirgard, Microelectronics Reliability, 48 (2008) 1473-1478.
    [115] O. Briat, J.M. Vinassa, N. Bertrand, H.E. Brouji, J.Y. Delétage, E. Woirgard, Microelectronics Reliability, 50 (2010) 1796-1803.
    [116] R. German, O. Briat, A. Sari, P. Venet, M. Ayadi, Y. Zitouni, J.M. Vinassa, Microelectronics Reliability, 53 (2013) 1643-1647.
    [117] D. Weingarth, A. Foelske-Schmitz, R. Kötz, Journal of Power Sources, 225 (2013) 84-88.
    [118] T.H. Wu, C.T. Hsu, C.C. Hu, L.J. Hardwick, Journal of Power Sources, 242 (2013) 289-298.
    [119] M. Hahn, A. Würsig, R. Gallay, P. Novák, R. Kötz, Electrochemistry Communications, 7 (2005) 925-930.
    [120] J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Journal of Power Sources, 101 (2001) 109-116.
    [121] M. Hahn, O. Barbieri, R. Gallay, R. Kötz, Carbon, 44 (2006) 2523-2533.
    [122] A. Ferrari, J. Robertson, Physical Review B, 64 (2001) 075414.
    [123] C. Sole, N.E. Drewett, L.J. Hardwick, Faraday discussions, 172 (2014) 223-237.
    [124] N. Shimodaira, A. Masui, Journal of applied physics, 92 (2002) 902-909.
    [125] L.J. Hardwick, P.W. Ruch, M. Hahn, W. Scheifele, R. Kötz, P. Novák, Journal of Physics and Chemistry of Solids, 69 (2008) 1232-1237.
    [126] J.S. Roh, Carbon letters, 9 (2008) 127-130.
    [127] G. Janz, J. Ambrose, J. Coutts, J. Downey, Spectrochimica Acta Part A: Molecular Spectroscopy, 35 (1979) 175-179.
    [128] N.L. Wu, S.Y. Wang, Journal of Power Sources, 110 (2002) 233-236.
    [129] S. Kuroda, N. Tobori, M. Sakuraba, Y. Sato, Journal of Power Sources, 119-121 (2003) 924-928.
    [130] Y.J. Kim, Y.A. Kim, T. Chino, H. Suezaki, M. Endo, M.S. Dresselhaus, Small, 2 (2006) 339-345.
    [131] J.P. Trigueiro, R.S. Borges, R.L. Lavall, H.D. Calado, G.G. Silva, Nano Research, 2 (2009) 733-739.
    [132] K.S. Kim, S.J. Park, Bull. Korean Chem. Soc, 34 (2013) 2343.
    [133] F. Beck, M. Dolata, E. Grivei, N. Probst, Journal of applied electrochemistry, 31 (2001) 845-853.
    [134] A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, A. Balducci, Journal of Power Sources, 196 (2011) 8836-8842.
    [135] P. Kossyrev, Journal of Power Sources, 201 (2012) 347-352.
    [136] M. Zhu, C. Weber, Y. Yang, M. Konuma, U. Starke, K. Kern, A. Bittner, Carbon, 46 (2008) 1829-1840.
    [137] P. Scherrer, Mathematisch-Physikalische Klasse, 2 (1918) 98-100.
    [138] B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum Pub. Co., New York, (1999).
    [139] M.W. Jung, K.H. Ahn, Y. Lee, K.P. Kim, J.S. Rhee, J.T. Park, K.J. Paeng, Microchemical Journal, 70 (2001) 123-131.
    [140] T.H. Liou, S.J. Wu, Journal of hazardous materials, 171 (2009) 693-703.
    [141] S. M. Ubnoske, A. S. Raut, C. B. Parker, J. T. Glass, B. R. Stoner, MRS Communications, 5 (2015) 285-290.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE