簡易檢索 / 詳目顯示

研究生: 羅毅揚
Luo, Yi-Yang
論文名稱: Incremental Floorplanning for I/O Signal Skew Improvement
針對輸入輸出訊號歪斜的平面規劃漸進式改良方法
指導教授: 麥偉基
Mak, Wai-Kei
口試委員: 陳宏明
黃婷婷
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 32
中文關鍵詞: 漸進式平面規劃輸入輸出訊號歪斜
外文關鍵詞: Incremental floorplanning, I/O signal skew
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了一個以線性規劃為基礎的漸進式平面規劃來最小化覆晶式設計的輸入輸出訊號歪斜。在線性規劃的模型中,我們加入了三種不同類型的限制條件。拓撲學的限制條件用來維持平面規劃的合法性。計算歪斜的限制條件用來計算輸入輸出訊號歪斜的量。當最小化歪斜的時候,使用約束線長的限制條件來約束線長的增加量。實驗結果顯示出使用漸進式平面規劃對於輸入輸出訊號歪斜可以有10%到31%的改善並且總線長的增加量可以被控制在可接受的範圍中甚至是獲得改善。


    In this thesis, we propose a linear programming-based incremental floorplanning algorithm
    to minimize the I/O signal skew for flip-chip design. In the linear programming, we add
    three types of constraints. The topological constraints are used to keep the legality of the
    floorplan. The skew evaluation constraints are used to evaluate the I/O signal skew. The
    wirelength restriction constraints are used to restrict wirelength increase when minimizing
    the skew. Experimental results show that I/O signal skew can be improved from 10% to
    31%, and the increase of total wirelength can be controlled in an acceptable range or even
    improved.

    Acknowledgement i Abstract ii 1 Introduction 1 2 Initial Floorplanning Flow 5 3 Problem Definition 7 4 Algorithm 9 4.1 Topological Constraint Construction . . . . 10 4.2 LP-based skew improvement . . . . 17 4.3 Wirelength restriction constraint . . . . 21 4.4 Summary of linear programming formulation . . . . 22 5 Experiment 24 6 Conclusion 29 Reference 30

    [1] C.-Y. Wang, W.-K. Mak, “Signal skew aware floorplanning and bumper signal assignment
    technique for flip-chip,” in Proceedings of IEEE Asia-South Pacific Design Automation
    Conference, 2009, pp. 341–346.
    [2] C.-Y. Peng, W.-C. Chao, Y.-W. Chang, J.-H. Wang, “Simultaneous Block and I/O
    Buffer Floorplanning for Flip-Chip Design,” in Proceedings of IEEE Asia-South Pacific
    Design Automation Conference, 2006, pp. 213–218.
    [3] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, S.-W. Wu, “B*-trees: A New Representation
    for Non-slicing Floorplans,” in Proceedings of of ACM/IEEE Design Automation Conference,
    2000, pp. 458–463.
    [4] G. Pascariu, P. Cronin, and D. Crowley, “Next generation electronics packaging utilizing
    flip chip technology,” in Proceedings of IEEE Electronics Manufacturing Technology
    Symposium, 2003, pp. 423–426.
    [5] M.-F. Lai, H.-M. Chen, “An Implementation of Performance-Driven Block and I/O
    Placement for Chip-Package Codesign,” in Proceedings of IEEE International Symposium
    on Quality Electronic Design, 2008, pp.604–607.
    [6] H.-Y. Hsieh and T.-C. Wang, “Simple Yet Effective Algorithms for Block and I/O
    Buffer Placement in Flip-Chip Designs,” in Proceedings of IEEE International Symposium
    on Circuits and Systems, 2005, pp.1879-1882.
    [7] X. Li, Y. Ma, X. Hong, S. Dong, “An Analytical Approach to Incremental Floorplanning,”
    in Proceedings of IEEE International Conference on Communications, Circuits
    and Systems, 2007, pp. 1145-1149.
    [8] Z. Wang, Y. Ma, S. Dong, Y. Wang, X. Hong, “Incremental I/O Planning with White
    Space Redistribution for Flip-chip Design,” in Proceedings of IEEE International Conference
    on Communications, Circuits and Systems, 2010, pp.866–870.
    [9] Z. He, Y. Ma, N. Xu, Y. Wang, X. Hong, “On Handling Fixed Blocks in Incremental
    Fixed-outline Floorplanning,” in Proceedings of IEEE International Conference on
    Communications, Circuits and Systems, 2010, pp.876–880.
    [10] X. Li, Y. Ma, X. Hong, “A Novel Thermal Optimization Flow Using Incremental
    Floorplanning for 3D ICs,” in Proceedings of IEEE Asia-South Pacific Design Automation
    Conference, 2009, pp. 347–352.
    [11] H. Ren, S. Dutt, “Constraint Satisfaction in Incremental Placement with Application
    to Performance Optimization under Power Constraints,” in Proceedings of IEEE International
    Conference on Computer Design, 2007, pp. 251–258.
    [12] S. Dutt, H. Ren, “Discretized Network Flow Techniques for Timing andWire-Length
    Driven Incremental Placement With White-Space Satisfaction,” in Proceedings of
    IEEE Transactions on Very Large Scale Integration Systems, 2011, pp.1277-1290.
    [13] X. Zhang, T. Takeuchi, M. Toyonaga, “AKEBONO: A Novel Quick Incremental
    Placer,” in Proceedings of IEEE International Conference on IC Design and Technology,
    2009, pp.51–53.
    [14] L. Huang, Y. Cai, Q. Zhou, X. Hong, J. Hu, Y. Lu, “Clock Network Minimization
    Methodology Based On Incremental Placement,” in Proceedings of IEEE Asia-South
    Pacific Design Automation Conference, 2005, pp. 99–102.
    [15] http://www.design-reuse.com/articles/7412/dynamic-floorplanning-a-practicalmethod-
    using-relative-dependencies-for-incremental-floorplanning.html
    [16] http://www.gurobi.com/
    [17] http://cc.ee.nthu.edu.tw/ywchang/research.html
    [18] http://www.duke.edu/ hpgavin/gnuplot.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE