研究生: |
朱倉禾 Jhu, Cang-He |
---|---|
論文名稱: |
可交聯電洞傳導高分子的合成及檢測 Synthesis and characterization of crosslinkable hole-transport polymers |
指導教授: |
堀江正樹
Horie, Masaki |
口試委員: |
周鶴修
Chou, Ho-Hsiu 游進陽 Yu, Chin-Yang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 159 |
中文關鍵詞: | 可交聯電洞傳導高分子 、鈣鈦礦太陽能電池 、咔唑-噻吩 、芴-苯胺 、熱交聯 |
外文關鍵詞: | thermally crosslinkable, carbazole-thiophene, fluorene-aniline, PTAA, perovskite solar cells |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
共軛導電高分子應用於有機電子元件時,常因其不穩定性導致元件壽命大幅下降。本研究致力於含咔唑-噻吩及含芴-苯胺的新型可交聯電洞傳導高分子,並藉由其可熱交聯的特性,達到提升鈣鈦礦太陽能電池的效能及穩定性。
第一章講述有關共軛導電高分子的基本知識、其在電子設備,例如:有機場效電晶體及太陽能電池的應用以及相關的合成方法機構。另外本研究的核心:熱交聯機制和本研究的材料:含咔唑-噻吩及含芴-苯胺高分子在此章均有詳細的介紹。
第二章講述含咔唑-噻吩及含芴-苯胺的可交聯高分子的合成方式。實驗證實兩類高分子在熱交聯後對有機溶劑的溶解度大幅下降,亦即高分子在交聯後穩定度大幅提升。此外高分子的可見光吸收光譜、螢光吸收光譜及光子激發光譜等光學性質亦完成量測。氫原子核磁共振光譜亦被應用於檢驗高分子上可交聯之官能基的存在與否。
第三章講述本研究的結論以及未來發展規劃。含芴-苯胺高分子將在鈣鈦礦太陽能電池上測試。第四章包含詳細的合成步驟及光譜資訊。
Conjugated polymers have been applied to various electronic devices. However, they encounter the problems of instability and short lifetime. In this work, novel crosslinkable-hole-transporting polymers comprising carbazole-thiophene and fluorene-aniline have been synthesized via direct arylation polymerization (DAP) and Buchwald polymerization, respectively, in order to improve the stability and lifetime of perovskite solar cells by thermal crosslink of the polymers.
In Chapter 1, the conjugated polymers and their applications on electric devices such as organic thin film transistors and photovoltaics are introduced, followed by elaboration for the mechanism of synthesis methods such as DAP. Also, the core of this work, thermally crosslinkable strategy, polycarbazole, PTAA and the aim for this work are described.
In Chapter 2, the synthesis of carbazole-thiophene based polymers and fluorene-aniline based polymers are described. The retention rate of the crosslinkable end-vinyl groups on fluorene group was tailored by polymerization conditions. The monomers and polymers are characterized by 1H NMR spectroscopy to estimate the presence of desirable functional group such as the crosslinkable vinyl group. Capability of crosslinking of the polymers are examined by solubility test after thermal crosslink of the polymers. As-synthesized polymers are soluble in common organic solvents such as chloroform, whereas the crosslinked polymers films are insoluble in solvents. This test is an evidence for enhancement of stability through the crosslink strategy. UV-visible, photoluminescence, and photoelectron spectra are measured for selected products.
In Chapter 3, conclusion and future projects are described. Fluorene-aniline based polymer will be tested for perovskite solar cell. Finally, in Chapter 4, detailed synthesis procedures, 1H NMR spectra, and GPC data of the products are shown.
1. C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. Macdiarmid, Phys Rev Lett, 1977, 39, 1098-1101.
2. A. Heeger, Angew. Chem. Int. Ed., 2001, 40, 2591-2611.
3. R. Søndergaard, M. Hösel, D. Angmo, T. T. Larsen-Olsen and F. C. Krebs, Mater. Today, 2012, 15, 36-49.
4. R. R. Søndergaard, M. Hösel and F. C. Krebs, J. Polym. Sci., Part B: Polym. Phys., 2013, 51, 16-34.
5. S. Liu, P. He, S. Hussain, H. Lu, X. Zhou, F. Lv, L. Liu, Z. Dai and S. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 6618-6623.
6. Y. Xu, X. Wang, J. Zhou, B. Song, Z. Jiang, E. M. Lee, S. Huberman, K. K. Gleason and G. Chen, Sci. Adv., 2018, 4, eaar3031.
7. A. Suzuki, Chem. Commun., 2005, 4759-4763.
8. H. Bohra and M. Wang, J. Mater. Chem. A, 2017, 5, 11550-11571.
9. I. Hussain, J. Capricho and M. A. Yawer, Adv. Synth. Catal. , 2016, 358, 3320-3349.
10. M. Kosugi, M. Kameyama and T. Migita, Chem. Lett., 1983, 12, 927-928.
11. B. H. Yang and S. L. Buchwald, J. Organomet. Chem., 1999, 576, 125-146.
12. C. A. Fleckenstein and H. Plenio, Chem. Soc. Rev., 2010, 39, 694-711.
13. H. Li, C. C. Johansson Seechurn and T. J. Colacot, ACS Catal., 2012, 2, 1147-1164.
14. P. Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016, 116, 12564-12649.
15. Y. Sunesson, E. Lime, S. O. Nilsson Lill, R. E. Meadows and P. O. Norrby, J. Org. Chem., 2014, 79, 11961-11969.
16. A. Kiriy, V. Senkovskyy and M. Sommer, Macromol. Rapid Commun., 2011, 32, 1503-1517.
17. R. Yuan, D. Zhao, L.-Y. Zhang, X. Pan, Y. Yang, P. Wang, H.-F. Li and C.-S. Da, Org. Biomol. Chem., 2016, 14, 724-728.
18. B. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Chem. Rev., 2011, 111, 1493-1528.
19. P. A. Byrne and D. G. Gilheany, Chem. Soc. Rev., 2013, 42, 6670-6696.
20. W. PK, Proc IRE, 1962, 50:1462, 16.
21. L. Torsi, M. Magliulo, K. Manoli and G. Palazzo, Chem. Soc. Rev., 2013, 42, 8612-8628.
22. A. Dodabalapur, Mater. Today, 2006, 9, 24-30.
23. J. Zaumseil and H. Sirringhaus, Chem. Rev., 2007, 107, 1296-1323.
24. S. G. Bailey and D. J. Flood, Prog. Photovoltaics Res. Appl., 1998, 6, 1-14.
25. C. J. Brabec, Sol. Energy Mater. Sol. Cells, 2004, 83, 273-292.
26. M. I. H. Ansari, A. Qurashi, M. K. J. J. o. P. Nazeeruddin and P. C. P. Reviews, J. Photochem. Photobiol., C, 2018, 35, 1-24.
27. C. W. Tang, Appl. Phys. Lett., 1986, 48, 183-185.
28. K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533-4542.
29. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868-5923.
30. M. Y. Jo, S. J. Park, T. Park, Y. S. Won and J. H. Kim, Org. Electron, 2012, 13, 2185-2191.
31. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 2013, 15, 8972-8982.
32. M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci., 2013, 38, 1929-1940.
33. C. Eames, J. M. Frost, P. R. Barnes, B. C. O’regan, A. Walsh and M. S. Islam, Nat. Commun., 2015, 6, 7497.
34. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
35. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum and J. E. Moser, Sci. Rep., 2012, 2, 591.
36. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. Park, Nanoscale, 2011, 3, 4088-4093.
37. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395.
38. M. Jung, T. J. Shin, J. Seo, G. Kim and S. I. Seok, Energy Environ. Sci., 2018, 2188-2197.
39. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 2013, 342, 341-344.
40. M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang and Y. Qi, J. Mater. Chem. A, 2014, 2, 18742-18745.
41. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 1228604.
42. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316.
43. Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 2015, 10, 355-396.
44. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
45. N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, J. Am. Chem. Soc., 2014, 136, 7837-7840.
46. Z. Yu and L. Sun, Adv. Energy Mater., 2015, 5, 1500213.
47. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar and M. K. Nazeeruddin, Nat. Photonics, 2013, 7, 486.
48. A. Abrusci, S. D. Stranks, P. Docampo, H.-L. Yip, A. K.-Y. Jen and H. J. Snaith, Nano Lett., 2013, 13, 3124-3128.
49. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
50. C. V. Kumar, G. Sfyri, D. Raptis, E. Stathatos and P. Lianos, RSC Adv., 2015, 5, 3786-3791.
51. Y. Sato, Catal. Today, 1997, 39, 89-98.
52. C. Tang, R. Bi, Y. Tao, F. Wang, X. Cao, S. Wang, T. Jiang, C. Zhong, H. Zhang and W. Huang, Chem. Commun., 2015, 51, 1650-1653.
53. K. Shibasaki, T. Yasuda, Y. Yamamoto and M. Kijima, Polymer, 2017, 108, 305-312.
54. M. Cai, T. Xiao, Y. Chen, E. Hellerich, R. Liu, R. Shinar and J. Shinar, Appl. Phys. Lett., 2011, 99, 254.
55. A. G. Grigoras, Int. J. Polym. Mater., 2016, 65, 888-900.
56. M. Baibarac and e. al., Compos. Sci. Technol., 2007, 67, 2556-2563.
57. G. Sathiyan, E. Sivakumar, R. Ganesamoorthy, R. Thangamuthu and P. Sakthivel, Tetrahedron Lett., 2016, 57, 243-252.
58. S. Kato, S. Shimizu, A. Kobayashi, T. Yoshihara, S. Tobita and Y. Nakamura, J. Org. Chem., 2014, 79, 618-629.
59. A. Siove and D. Ades, Polymer, 2004, 45, 4045-4049.
60. R. Schroot, U. S. Schubert and M. Jäger, Macromolecules, 2016, 49, 8801-8811.
61. A. Facchetti, L. Vaccaro and A. Marrocchi, Angew. Chem. Int. Ed., 2012, 51, 3520-3523.
62. A. Al Mousawi, F. Dumur, P. Garra, J. Toufaily, T. Hamieh, B. Graff, D. Gigmes, J. P. Fouassier and J. Lalevée, Macromolecules, 2017, 50, 2747-2758.
63. G. Rieveschl and F. E. Ray, Chem. Rev., 1938, 23, 287-389.
64. M. Inbasekaran, E. Woo, W. Wu, M. Bernius and L. Wujkowski, Synth. Met., 2000, 111, 397-401.
65. M. Ranger, D. Rondeau and M. Leclerc, Macromolecules, 1997, 30, 7686-7691.
66. K. R. Carter, Macromolecules, 2002, 35, 6757-6759.
67. W. Lu, J. Kuwabara and T. Kanbara, Macromol. Rapid Commun., 2013, 34, 1151-1156.
68. A. Alvarez, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel and A. Salinas-Castillo, Trends Anal. Chem., 2011, 30, 1513-1525.
69. Y. Wang, B. Liu, A. Mikhailovsky and G. C. Bazan, Adv. Mater., 2010, 22, 656-659.
70. C. Sekine, Y. Tsubata, T. Yamada, M. Kitano and S. Doi, Sci. Technol. Adv. Mater., 2014, 15, 034203.
71. A. Das, R. Dost, T. Richardson, M. Grell, J. J. Morrison and M. L. Turner, Adv. Mater., 2007, 19, 4018-4023.
72. M. Horie, Y. Luo, J. J. Morrison, L. A. Majewski, A. Song, B. R. Saunders and M. L. Turner, J. Mater. Chem., 2008, 18, 5230-5236.
73. Y. Kim, E. H. Jung, G. Kim, D. Kim, B. J. Kim and J. Seo, Adv. Energy Mater., 2018, 8, 1801668.
74. R. S. Sprick, M. Hoyos, O. Navarro and M. L. Turner, React. Funct. Polym., 2012, 72, 337-340.
75. R. S. Sprick, M. Hoyos, J. J. Morrison, I. M. Grace, C. Lambert, O. Navarro and M. L. Turner, J. Mater. Chem. C, 2013, 1, 3327-3336.
76. R. S. Sprick, M. Hoyos, M. S. Wrackmeyer, A. V. S. Parry, I. M. Grace, C. Lambert, O. Navarro and M. L. Turner, J. Mater. Chem. C, 2014, 2, 6520-6528.
77. Q. Zhao, R. Wu, Z. Zhang, J. Xiong, Z. He, B. Fan, Z. Dai, B. Yang, X. Xue and P. Cai, Org. Electron., 2019, 71, 106-112.
78. Q. Wang, C. Bi and J. Huang, Nano Energy, 2015, 15, 275-280.
79. J. Ahmad, K. Bazaka, L. J. Anderson, R. D. White and M. V. Jacob, Renewable Sustainable Energy Rev., 2013, 27, 104-117.
80. J. W. Rumer and I. McCulloch, Mater. Today, 2015, 18, 425-435.
81. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang and C.-S. Hsu, J. Am. Chem. Soc., 2010, 132, 4887-4893.
82. Y.-J. Cheng, C.-H. Hsieh, P.-J. Li and C.-S. Hsu, Adv. Funct. Mater., 2011, 21, 1723-1732.
83. M. Li, Z.-K. Wang, T. Kang, Y. Yang, X. Gao, C.-S. Hsu, Y. Li and L.-S. Liao, Nano Energy, 2018, 43, 47-54.
84. C.-C. Chang, J.-H. Tao, C.-E. Tsai, Y.-J. Cheng and C.-S. Hsu, ACS Appl. Mater. Interfaces, 2018, 10, 21466-21471.
85. H. Waters, J. Kettle, S.-W. Chang, C.-J. Su, W.-R. Wu, U. S. Jeng, Y.-C. Tsai and M. Horie, J. Mater. Chem. A, 2013, 1.
86. S. Miyanishi, K. Tajima and K. Hashimoto, Macromolecules, 2009, 42, 1610-1618.
87. T. Mahata, A. Kanungo, S. Ganguly, E. K. Modugula, S. Choudhury, S. K. Pal, G. Basu and S. Dutta, Angew. Chem. Int. Ed., 2016, 55, 7733-7736.