簡易檢索 / 詳目顯示

研究生: 甘逸凱
Kan, Yi-Kai
論文名稱: 電子束橫向大小對預輻射區渡越輻射影響之理論與模擬研究
Theoretical and Simulation Studies of Transverse Beam Size Effects on Optical Transition Radiation in Pre-Wave Zone
指導教授: 劉偉強
Lau, Wai-Keung
張存續
Chang, Tsun-Hsu
口試委員: 陳仕宏
Chen, Shih-Hung
柳克強
Leou, Keh-Chyang
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 49
中文關鍵詞: 渡越輻射預輻射區電子束大小
外文關鍵詞: transition radiation, pre-wave zone, beam size
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Kirchhoff方法為基礎,發展考慮電子束大小之預輻射區渡越輻射理論,我們以此發展出的理論來研究橫向電子數大小對預輻射區渡越輻射角分布的影響。
    我們使用準蒙地卡羅法來計算理論所包含的數值積分,一般來說蒙地卡羅積分比較耗時,而在本研究中我們需要計算不同角度的輻射能量來獲得輻射角分布,因此也將開發的數值積分程式平行化來減少計算時間。
    我們也以二維的有限差分時域模擬來驗證發展的理論,此研究發展的理論和數值工具,可以用來預測國家同步輻射中心的太赫茲同調渡越輻射實驗之輻射特性。


    Optical transition radiation (OTR) has been studied and applied on the beam diagnostics for decades. The potential implication of OTR also includes THz radiation sources. Therefore, the theoretical analysis and simulation tool become indispensable for the study
    of OTR. The OTR theory for the wave zone (far-field approximation) has been widely used, and the theory for the pre-wave zone has also been proposed on the basis of single electron approximation. In this study, we developed a theory with consideration of
    the electron beam structure based on the Kirchhoff’s method for studying the effect of beam transverse size on the angular distribution of OTR in pre-wave zone. The proposed formalism involves complicated convolution integral of functions and the dimension of the integrand is not the low dimension. To perform such integral, we developed a Fortran program for quasi-monte carlo method, which is robust and suitable for high dimensional integration. The disadvantage of this method is that a large amount of samplings may need to be employed to achieve good convergence. To get the radiation angular profile, we need to perform such integration for different observation angles. This is computing intensive, therefore we parallelize the program with MPI. Two-dimensional FDTD simulations were performed to verify the theoretical calculations. The proposed theory and numerical tool would be used to predict radiation properties of NSRRC THz coherent transition radiation (CTR) in the pre-wave zone.

    Contents Acknowledgement i 中文摘要 ii Abstract iii 1 Introduction 1 2 Theory 3 2.1 Kirchhoff’s Method for OTR . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Kirchhoff’s method for plane conductor . . . . . . . . . . . . . . . . 3 2.1.2 Radiation field in observer’s frame . . . . . . . . . . . . . . . . . . . 4 2.2 Velocity Field from a Bunch of Elctrons . . . . . . . . . . . . . . . . . . . 5 2.2.1 Velocity field from a bunch of elctrons in electron’s frame . . . . . . 5 2.2.2 Velocity field from a bunch of elctrons in target’s frame . . . . . . . 6 2.3 OTR from a Bunch of Electrons . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 Pre-wave zone and wave zone . . . . . . . . . . . . . . . . . . . . . 9 2.4 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Simulation 14 3.1 Finite Difference Time Domain (FDTD) Method . . . . . . . . . . . . . . . 14 3.1.1 Finite difference of maxwell’s equations . . . . . . . . . . . . . . . . 14 3.1.2 Stability in FDTD . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.3 Abosorbing boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Simulation for OTR with Normal Incidence . . . . . . . . . . . . . . . . . 24 4 Results and Discussion 26 4.1 Theoretical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Wave zone vs. pre-wave zone . . . . . . . . . . . . . . . . . . . . . 26 4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.1 Evolution of Bz field in full simulation domain . . . . . . . . . . . . 28 4.2.2 Simulation vs. theory . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 Oblique Incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5 Conclusion 34 Appendices 35 A Monte Carlo Integration Code 35 A.1 Brief Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 A.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 A.3 Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 References 35

    [1] I. M. Frank, V. L. Ginzburg, J. Phys. (USSR) 9, 353 (1945).
    [2] M.L. Ter-Mikaelian, High-energy electromagnetic processes in condensed media
    (1972).
    [3] L. Landau, E. Lifshitz, Electrodynamics of Continuous Media (1984), second edn.
    [4] B. Gitter, Optical Transition Radiation, Tech. rep. (1992).
    [5] L. Wartski, S. Roland, J. Lasalle, M. Bolore, G. Filippi, J. Appl. Phys. 46, 3644
    (1975).
    [6] R. Fiorito, C. Welsch, H. Zhang, A. Shkvarunets, Proc. IPAC pp. 1150–1152 (2015).
    [7] E. Fermi, Zeitschrift für Phys. 29, 315 (1924).
    [8] V. A. Verzilov, Phys. Lett. A pp. 135–140 (2000).
    [9] D. V. Karlovets, A. P. Potylitsyn, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 266, 3738 (2008).
    [10] Z. Wu, et al., Rev. Sci. Instrum. 84, 022701 (2013).
    [11] M. C. Hoffmann, S. Schulz, S. Wesch, S. Wunderlich, B. Schmidt, IRMMW-THz
    2011 - 36th Int. Conf. Infrared, Millimeter, Terahertz Waves (2011).
    [12] G. L. Orlandi, Opt. Commun. 211, 109 (2002).
    [13] G. L. Orlandi, Proc. 27th Int. Free Electron Laser Conf. pp. 576–579 (2005).
    [14] G. L. Orlandi, Opt. Commun. 267, 322 (2006).
    [15] G. L. Orlandi, Proc. EPAC08 pp. 1221–1223 (2008).
    48
    REFERENCES 49
    [16] J. Schwinger, L. DeRaad Jr, K. Milton, W.-y. Tsai, Classical Electrodynamics
    (Perseus, Reading, MA, 1998) (Chap).
    [17] D. V. Karlovets, A. P. Potylitsyn, J. Exp. Theor. Phys. 106, 1045 (2008).
    [18] R. E. Caflisch, Acta Numer. 1998 7, 1 (1998).
    [19] K. S. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
    [20] J. G. Charney, R. FjöRtoft, J. V. Neumann, Tellus 2, 237 (1950).
    [21] J. Schneider, C. Wagner, IEEE Microw. Guid. Wave Lett. 9, 54 (1999).
    [22] Allen Taflove, Computational electrodynamics: the finite-difference time-domain method (2005), third edn.
    [23] Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, IEEE Trans. Antennas Propag. 43, 1460 (1995).

    QR CODE