研究生: |
李宜宸 Yi-Chen Li |
---|---|
論文名稱: |
具障礙物管流之數值模擬應用於渦輪葉片散熱與顱內動脈瘤治療 NUMERICAL STUDIES ON OBSTRUCTED CHANNEL FLOWS RELEVANT TO TURBINE BLADE COOLING AND INTRACRANIAL ANEURYSM THERAPY |
指導教授: |
劉通敏
Tong-Miin Liou 戴昌賢 Chang-Hsien Tai 黃柏文 Po-Wen Hwang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 269 |
中文關鍵詞: | 渦輪葉片散熱 、內冷卻流道 、高旋轉速 、顱內動脈瘤 、人工支架 、壁面剪應力與壓力 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文使用計算流體力學的方式探討具障礙物管流:渦輪機葉片內冷卻流場與顱內動脈瘤內流場。在渦輪機葉片內冷卻流場的研究,旨在希望藉由內冷卻流道設計提高燃氣渦輪機葉片的熱傳增益,進而提高燃燒室出口溫度,以增加渦輪引擎單位重量之推力與提升燃氣渦輪機的熱效率。本論文此部分探討平滑與具45度攻角障礙物之靜止方形截面雙通管道流場,以及具90度攻角障礙物之靜止與旋轉方形管道之發展流與全展流,最後探討文獻中甚少報導之高旋轉速(相對於先前文獻高旋轉速意指Ro>0.5)下具45度攻角多重障礙物流場與熱傳模擬。由於真實渦輪葉片內冷卻流道流場最大雷諾數Re=100000,最大旋轉速Ro=2,且流道內溫度不均勻造成流場有較大的密度變化,因此採用求解可壓縮Navier-Stokes方程式是較佳的選擇,而本文為了與低Re之實驗結果比較驗證並且期望將來可以利用相同的程式求解真實渦輪機在高Re和高Ro下之內冷卻流場,因此數值方法主要採用有限體積法搭配預調法(Preconditioning Method)求解可壓縮Navier-Stokes方程式以模擬低雷諾數(Re=10000)之流場,式中時間項採用顯式三點向後差分法來進行離散,而對流項的處理則使用AUSMDV,並應用Van Leer 所提出的Kappa法求解網格介面左右兩側流體流動性質,此外為了防止數值震盪之發生,則搭配minmod限制子來監控變數的變化與提高空間精度為二階,而擴散項的求解則採用中央差分法。計算結果以主流與二次流速度分佈、再附著長度、壓力與無因次熱傳比值等探討相關物理現象,並與前人實驗結果進行比較。本文所探討之各算例計算結果大多與實驗量測值吻合。而結果亦包含發展流與全展流流場之模擬,可供週期全展假設與真實情形差異之參考。本文主要結論為高旋轉速(Ro=1.5和2)下主流方向在第四對肋條後每一節距內皆呈現一對對轉展向渦旋結構,此結構未見於靜止或低轉速(Ro≦0.2)下管道流場,而此渦旋結構為促進高轉速下有較高無因次熱傳比值的重要流場機制。在迎風面熱傳與旋轉數的關係存在三個臨界旋轉速(Roc1=0.1,Roc2=0.5,Roc3=1),其中Ro<Roc1時無因次熱傳比值會隨著Ro增大而下降,Ro>Roc1則會快速上升,當Ro> Roc2其上升的變化會較為平緩,在Ro> Roc3以後無因次熱傳比值會較靜止管道佳;對於背風面而言,無因次熱傳比值則會隨著Ro的增加逐漸增高,此結果與前人熱傳實驗趨勢一致。
另一種具障礙物管流應用即為顱內動脈瘤的治療,在顱內動脈瘤流場數值模擬方面,由於側向動脈瘤之流場實驗量測文獻甚少,且鮮少有文獻探討動脈瘤與彎曲型母管角度(γ)的關係,此外在動脈瘤入口處加裝人工支架的治療方法逐漸成為主流,對於加裝人工支架的動脈瘤流場,是否達到治療效果的預測變為非常重要。因此,本文在此部分探討是否存在一比較危險的γ角,使得顱內側向動脈瘤內的血液動力特性危及瘤壁等等,以及探討安裝不同孔隙率(Cα)之人工支架在直型母管與彎型母管(僅討論較危險γ角的案例)的動脈瘤入口,對瘤內流場特性之影響。數值模擬方法以有限體積離散方法模擬計算探討脈動狀態下內頸動脈側向動脈瘤模型之脈動流場特性,其中時間精度為二階之Crank-Nicolson法,空間精度採用二階上風法(對流項)與中央差分法(擴散項),並且搭配SIMPLEC演算法解決壓力與速度的耦合問題。結果討論血流動力因素之相關物理量包含瘤內渦漩結構、瘤內速度向量場與二次流、流入瘤體之流量、瘤璧剪應力以及壓力分佈。結果顯示各算例之計算結果皆與實驗量測值相吻合。從各種血流動力因子綜合探討發現γ為45度時較為危險,針對最危險夾角之案例安裝不同孔隙率的人工支架,並將不同孔隙率之人工支架模型類比為治療時所需商用人工支架的層數,發現安裝雙層人工支架比單層人工支架有更大的改善,但安裝三層人工支架則與兩層差異不大。在直型母管側向動脈瘤研究中發現動脈瘤內之相關血流動力因子其量值皆遠低於彎形母管側向動脈瘤,在安裝不同孔隙率之人工支架模型後發現安裝雙層人工支架較單層佳,安裝三層則與兩層差異不大,此結果與彎管相似。此外,因動脈瘤內之血栓形成可以減低其破裂之機率,故經檢視瘤內環境是否適合血栓形成之低剪應力區(壁面剪應力<0.5Pa),發現對於彎形母管加裝單層人工支架而言,在動脈瘤開口處會有局部位置大於低剪應力區,甚至會大於高剪應力區(壁面剪應力>1.5Pa),然而安裝雙層人工支架後瘤內大部分的區域皆小於低剪應力區。而在檢視直形母管時發現,無論加裝單層或雙層人工支架瘤內區域皆小於低剪應力區。由上述得知彎形母管較直形母管側向動脈瘤危險,但在加裝雙層人工支架後都能將瘤內的剪應力降到適合產生血栓的環境。而上述結論可以作為人工支架廠商設計人工支架與醫生臨床治療之參考。
Abdel-Wahab, S., Tafti, D. K., 2004. Large-Eddy Simulations of Flow and Heat Transfer in 90-deg Duct Ribbed with Rotation – Effect of Coriolis Forces. ASME Paper No. GT-2004-53796.
Abdel-Wahab, S., Tafti, D. K., 2004. Large-Eddy Simulations of Flow and Heat Transfer in 90-deg Ribbed Duct with Rotation – Effect of Coriolis Forces And Buoyancy Forces. ASME Paper No. GT-2004-53799.
Abdel-Wahab, S., Tafti, D. K., 2004. Large-Eddy Simulations of Flow and Heat Transfer in a Staggered 45-deg Ribbed Duct. ASME Paper No. GT-2004-53800.
Aenis M., Stancampiano A.P., Wakhloo A.K., Lieber B.B., 1997. Modeling of Flow in A Straight Stented and Nonstented Side Wall Aneurysm Model. Journal of Biomechanical Engineering 119, 206-212.
Al-Qahtani M., Jang, Y. J., Chen, H. C., Han, J. C., 2001. Preidction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channel with 45-deg Rib Turbulators. ASME paper 2001-GT-0187.
Alzamora, M.G.., Rosahl, S.K., Lehmberg, J., Klisch, J., 2005. Life-threatening Bleeding From A Vertebral Artery Pseudoaneurysm After Anterior Cervical Spin Approach: Endovascular Repair by A Triple Stent-in-Stent Method. Case Report. . Neuroradiology 47, 282-286.
Anderson, D. A., Tannehill, J. C., Pletcher, R. H., 1984. Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing Corporation, New York.
Azad, G.M.S., Uddin, M.J., Han, J.C., Moon, H.K., Glezer, B., 2001. Heat Transfer in Two-Pass Rectangular Rotating Channels with 45-deg Parallel and Crossed Rib Turbulators. ASME paper 2001-GT-0186.
Bando, K., Berger, S.A., 2003. Research on Fluiddynamic Design Criterion of Stent Used for Treatment of Aneurysms by Means of Computational Simulation. Computational Fluid Dynamics Journal 11, 527-531.
Beer, J. M., Lee, K. B., 1965. The Effect of the Residence Time Distribution on the Performance and Efficiency of Combustors. Tenth Symposium (International) Combustion and Flame, 1187-1202.
Benndorf G., Herbon U., Sollmann W.P., Campi A., 2001. Treatment of A Ruptured Dissecting Vertebral Artery Aneurysm With Double Stent Placement: Case Report. AJNR. American Journal of Neuroradiology 22, 1844-1848.
Bhattacharjee, S., Scheelke, B., Troutt, T. R., 1986. Modification of Vortex Interactions in a Reattaching Separated Flow. AIAA Journal 24, 623-629.
Black, S.P.W., German, W.J., 1960. Observations on The Relationship Between The Volume and The Size of The Orifice of Experimental Aneurysms. Journal of Neurosurgery 17, 984-990.
Bonhoff, B., Tomm, U., Johnson, B.V., Jennions, I., 1997. Heat Transfer Predictions for Rotating U-Shaped Coolant Channels with Skewed Ribs and with Smooth Walls. ASME 97-GT-162.
Burleson, A.C., Strother, C.M. Turitto, V.T., 1995. Computer Modeling of Intracranial Saccular and Lateral Aneurysms for The Study of Their Hemodynamics, Neurosurgery 37, 774-784.
Cebral, J. R., Lohner, R., Soto, O., Yim, P.J., 2001. On the modeling of carodit artery blood flow from magnetic resonance images. Bioengineering Conference ASME 2001, BED-Vol. 50
Cebral, J.R., Castro, M.A., Burgess, J.E., Putman, C.M., 2004. Cerebral aneurysm hemodynamics modeling from 3D rotational angiography. Proc. 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 944-947.
Chang, S.W., Liou, T.M., Yeh, W.H., Hung, J.H., 2006a. Heat Transfer in a Radially Rotating Square Sectioned Ducts with Two Opposite Walls Roughened by 45-deg Staggered Ribs. ASME GT2006-90153
Chang, S.W., Yang, T.L., Wang, W.J., 2006b. Heat Transfer in a Rotating Twin-Pass Trapezoidal-Sectioned Passage Roughened by Skewed Ribs on Two Opposite Walls, Journal of Heat Transfer Engineering 27(10), 63-79
Chen, H.C., Jang, Y.J., Han, J.C., 2000a. Computation of Heat Transfer in Rotating Two-Pass Square Channels by a Second-Moment Closure Model. International Journal of Heat and Mass Transfer 43, 1603-1616.
Chen, H.C., Jang, Y.J., Han, J.C., 2000b. Near-Wall Second-Moment Closure for Rotating Multi-Pass Cooling Channels. AIAA Journal of Thermophysics and Heat Transfer 14, 201-209.
Choi, Y. D., Iacovides, H., Launder, B. E., 1989. Numerical Computation of Turbulent Flow in a Square-Sectioned 180 Deg Bend. Transactions of the ASME, Journal of Fluids Engineering 111, 59-68.
Choi, Y.H., Merkle, C.L., 1993. The Application of Preconditioning in Viscous Flow. Journal of Computational Physics 105, 207~223
Chun, K. B., Sung, H. J., 1996. Control of Turbulent Separated Flow Over a Backward-Facing Step by Local Forcing. Experiments in Fluids 21, 1093-1100.
Chun, K. B., Sung, H. J., 1998. Visualization of a Locally-Forced Separated Flow Over A Backward-Facing Step. Experiments in Fluids 25, 133-142.
Chyu, M. K., 1991. Regional Heat Transfer in Two-Pass and Three-Pass Passages with 180 Deg Sharp Turns. ASME Journal of Heat Transfer 113, 63-70.
Cooke, J.P., Stamler, J., Andon, N., Davies, P.F., Mckinley, G., Loscalzo, J., 1990. Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol. American Journal of Physiology 259, H804-H812.
Crawford, T., 1959. Some Observations of The Pathogenesis and Natural History of Intracranial Aneurysms. Journal of Neurology, Neurosurgery, and Psychiatry. 22, 259-266.
Edwards, J. R., 1997. Low diffusion flux splitting methods for flow at all speed. Computer & Fluids. 26, 635-659.
Evan, A., Tafti, D. K., 2004. Large-Eddy Simulations of The Developing Region of a Stationary Ribbed Internal Turbine Blade Cooling Channel. ASME Paper No. GT-2004-53832.
Evan, A., Tafti, D. K., 2004. Large-Eddy Simulations of The Developing Region of a Rotating Ribbed Internal Turbine Blade Cooling Channel. ASME Paper No. GT-2004-53833.
Ferguson, G.G., 1972. Physical Factors in the Initiation, Growth, and Rupture of Human Intracranial Saccular Aneurysms. J. Neurosurg 37, 666-677.
Fureby, C., Möller, S. I., 1995. Large Eddy Simulation of Reacting Flows Applied to Bluff Body Stabilized Flames. AIAA Journal 33, 2339-2347.
Hassler O, 1961”Morphological Studies on the Large Cerebral Arteries with Reference to the Aetiology of Subarachnoid haemo-rrhage,” Acta Neurol Scand Suppl, 154:1-145.
Hirsch, C., 1988, "Numerical Compitating of Internal and External Flow," Wily
Johnson, B. V., Wagner, J. H., Steuber, G. D., Yeh, F. C., 1994. Heat Transfer in Rotating Serpentine Passages with Trips Skewed to the Flow. ASME Journal of Turbomachinery 116, 113-123.
Johnson, R. W., 1988. Numerical Simulation of Local Nusselt Number for Turbulent Flow in a Square Duct with a 180 Deg Bend. Numerical Heat Transfer 13, 205-228.
Juvela, S., 2003. Prehemorrhage risk factors for fatal intracranial aneurysm rupture. Stroke 34, 1852-1857.
Kailasanath, K, Gardner, J. H., Boris, J. P., Oran, E. S., 1989. Acoustic-vortex interactions and low-frequency oscillations in axisymmetric combustors. Journal of Propulsion and Power 5, 165-171.
Krametz, E., Schulte, G., 1988. Observation of a Reacting Shear Layer in A Backward-Facing Step Flow. Proceedings of the 4th International Symposium on Application of Laser Anemometry to Fluid Mechanics, Lisbon, Portugal, Paper 2.6.
Liepsch, D. W., Steiger, H. J., Poll, A., Reulen, H. J., 1987. Hemodynamic Stress in Lateral Saccular Aneurysms. Biorheology 24, 689-710.
Lin, Y. L., Shih, T. I-P., Stephens, M. A., and Chyu, M. K., 2001. A Numerical Study of Flow and Heat Transfer in A Smooth and Ribbed U-duct With and Without Rotation. Transactions of the ASME, Journal of Heat Transfer 123, 219-232.
Liou, T.M., Hwang, J.J., Chen. S.H., 1992. Simulation and Measurement of Turbulent with Periodic Rib Turbulators. AIAA, Journal of Thermophysics and Heat Transfer 6, 513-521.
Liou T.M., 1993. Fluid Flow and Heat Transfer in a Channel with Rib-Disturbed Walls – A Review. The Chinese Journal of Mechanics 9, 91-113.
Liou, T. M., Lien, W. Y., Hwang, P. W., 1994. A Modified Godunov’s Scheme for Shock Tube Flows and Turbulent Combustion Flows. 4th National Conference on Combustion Science and Technology, Hsinchu, Taiwan, R.O.C., 242-247.
Liou, T. M., Chang, W. C., Liao, C. C., 1996. LDV Measurements in Lateral Model Aneurysms of Various Sizes. Experiments in Fluids 23, 317-324.
Liou, T. M, Lien, W. Y., Hwang, P. W., 1997. Flammability Limits and Probability Density Functions in Simulated Solid-Fuel Ramjet Combustors. Journal of Propulsion and Power 13, 643-650.
Liou, T.M., Liao, C.C., 1997. Flowfields in Lateral Aneurysm Arising From Parent Vessels with Different Curvatures Using PTV. Experiments in Fluids 23, 288-298.
Liou, T. M., Tzeng, Y. Y., Chen, C. C., 1998. Fluid Flow in a 180 Deg Sharp Turning Duct with Different Divider Thicknesses. ASME Paper No. 98-GT-189.
Liou, T. M., Hwang, P. W., 1998. Numerical Simulation and Residence Time Determination of Turbulent Reacting Duct Flow with Mass Bleed and a Backstep on One Wall. Proceedings of the 27th Symposium (Internation) on Combustion, 1131-1138.
Liou, T.M., Chen, S.H., Li, Y.C., Hwang, P.W., 2001. Effects of External Excitations on the Flame-Holding Characteristics of Backstep Flows with Wall Injections. Transactions of AASRC 33, 283-291.
Liou, T.M., Chen, M.Y., Tsai, M.H., 2001. Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct with In-line 90-deg Ribs. ASME Paper 01-GT-0185.
Liou, T. M., Chen, M. Y., Wang, Y. M., 2002. Fluid Flow and Heat Transfer in a Rotating Two-Pass Square Duct With In-Line 90-deg Ribs. Transactions of the ASME, Journal of Turbomachinery 124, 260-268.
Liou, T.M., Li, Y.C., Chen, S.H., Hwang, P.W., 2003. Large Eddy Simulation on Rotating Ribbed Straight Duct Flows. The 4th Cross-Strait CFD Conference, Yun-Nan, PROC
Liou T. M., Ting T.W., Chen Y. M., 2003. Numerical Analysis of Reynolds Number Effects on the Intra-Aneurysmal Flow Features of a Lateral Aneurysmal Arising from a Straight Parent Vessel. 20th Nat. Conf. on Mech. Energ. ,Taipei,Taiwan
Liou T. M., Ting T.W., Chen Y. M. 2004. Numerical Simulation on Intracranial Pulsatile Flow in a Curved Parent Vessel with a Lateral Aneurysm. The 11th National Computational Fluid Dynamics Conference, Taitung, Taiwan
Liou,T. M., Liou, S. N., 2004. Pulstile Flows in a Lateral Aneurysm Anchored on a Stented and Curved Parent Vessel. Journal of Experimental Mechanics 44, 253-260.
Liou, T. M., Dai, G. Y., 2004. Pressure and Flow Characteristics in a Rotating Two-Pass Duct with 45-deg Angled Ribs. Transactions of the ASME, Journal of Turbomachinery 126, 212-219.
Löw, M., Perktold, K., Rauning, R. 1993. Hemodynamics in Rrigid and Distensible Saccular Aneurysms: A Numerical Study of Pulsatile Flow Characteristics. Biorheology 30, 287-298.
McDonald, D.A., 1974. Blood Flow in Arteries. 2nd ed. Williams & Wilkins, Baltimore.
Malek, A.M., Alper, S.L., Izumo, S., 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA : The Journal of The American Medical Association 282, 2035-2042.
Mochizuki, S., Murata, A., Fukunaga, M., 1997. Effect of Rib Arrangements on Pressure Drop and Heat Transfer in a Rib-Roughened Channel with a Sharp 180- deg Turn. Transactions of the ASME, Journal of Turbomachinery 119, 610-616.
Murata, A., Mochizuki, S., 2001. Comparison Between Laminar and Turbulent Heat Transfer in a Stationary Square Duct With Transverse or Angled Rib Turbulators. International Journal of Heat and Mass Transfer 44, 1127-1141.
Nichols, W., O'Rourke, M., 1990. McDonald's Blood Flow in Arteries. Lea & Febiger, Philadelphia, London.
Niimi, H., Kawano, Y., Sugiyama, I., 1984. Structure of Blood Flow Through a Curved Vessel with an Aneurysm. Biorhelogy 21, 603-615.
Parsons, J. A., Han, J. C., Zhang, Y. M., 1994. Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with 90-deg Rib Turbulators. International Journal of Heat and Mass Transfer 37, 1411-1420.
Piomelli, U., 1993. High Reynolds Number Calculations Using The Dynamics Subgrid-scale Stress Model. Phys. Fluids A 5, 1484-1490.
Rhee, K., Han, M.H., Cha, S.H., 2002. Changes of Flow Characteristics by Stenting in Aneurysm Models: Influence of Aneurysm Geometry and Stent Porosity. Annals of Biomedical Engineering 30, 894-904.
Rigby, D.L., 1998. Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage with a 180 Degree Turn. ASME 98-GT-329.
Roach, R., Scott, S., Ferguson, G. G., 1972. The Hemodynamic Importance of the Geometry of Bifurcations in the Circle of Willis (Glass Model Studies). Stroke 3, 255-267
Roos, F. W., Kegelman, J. T., 1986. Control of Coherent Structures in Reattaching Laminar and Turbulent Shear Layers. AIAA Journal 24, 1956-1963.
Saad, M.A., 1993. Compressible Fluid Flow. Prentice-Hall, Inc.
Saha, A. K., Acharya, S., 2004. Flow and Heat Transfer in an Internally Ribbed Duct with Rotation: An Assessment of LES and URANS Large Eddy Simulations of The Developing Region of a Rotating Ribbed Internal Turbine Blade Cooling Channel. ASME Paper No. GT-2003-38619.
Sakamoto, S., Murakami, S., Mochida, A., 1993. Numerical Study on Flow Past 2D Square Cylinder by Large Eddy Simulation: Comparison Between 2D and 3D Computations. Journal of Wind Engineering and Industrial Aerodynamics 50, 61-68.
Schabacker, J., Boelcs, A., Johnson B. V., 1995. PIV Investigation of the Flow Characteristics in an Internal Coolant Passage with 45-deg Rib Arrangement. ASME Paper No. 97-GT-120.
Schabacker, J., Boelcs, A., Johnson B. V., 1999. PIV Investigation of the Flow Characteristics in an Internal Coolant Passage with 90-deg Rib Arrangement. 3rd European Conference on Turbomachinery Fluid and Thermodynamics, London, UK.
Serruys, P.W., Rensing, B.J., 2002. Handbook of coronary stents. 4th ed. Martin Dunitz, London.
Shuen, J.S., Chen, K.H., Choi, Y.H., 1993. A Coupled Implicit Method for Chemical Non-equilibrium Flow at All Speeds. Journal of Computational Physics 106, 306~318
Sigurdson, L. W., 1995. The Structure and Control of A Turbulent Reattaching Flow. Journal of Fluid Mechanics 298, 139-165
Smagorinsky, J., 1963. General Circulation Experiments with the Primitive Equation. Monthly Weather Review 91, 99-164.
Stephens, M.A., Shih, T.I-P., 1997. Computation of Compressible Flow and Heat Transfer in a Rotating Duct with Inclined Ribs and a 180 Deg Bend. ASME Paper 97-GT-192.
Stuhne, G.R., Steinman, D.A., 2004. Finite-element modeling of the hemodynamics of stented aneurysms. Journal of Biomechanical Engineering 126, 382-387.
Sutton G. P., 1992. Rocket Propulsion Elements. New York, John Wiley & Sons.
Tafti, D. K., 2003. Large-Eddy Simulations of Heat Transfer in a Ribbed Channel for Internal Cooling of Turbine Blades. ASME Paper No. GT-2003-38619.
Taslim, M. E., Li, T., Kercher, D. M., 1996. Experimental Heat Transfer and Friction in Channels Roughened with Angled, V-Shaped, and Discrete Ribs. Transactions of the ASME, Journal of Turbomachinery 118, 20-28.
Tse, G. N., Steuber, G. D., 1997. Flow in a Rotating Square Serpentine Coolant Passage With Skewed Trips. ASME Paper No. 97-GT-529.
Turkel E., 1987. Preconditioned Methods for Solving The Incompressible and Low Speed Compressilbe Equation. Journal of Computational Physics 72, 1pp.277~98
Turkel, E., 1999. Preconditioning techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385-416.
Van Leer, B., 1979. Toward the ultimate conservative difference scheme V, A second order sequel to Godunov’s method. Journal of Computational Physics. 32, 101 -136.
Viets, H., Piatt, M., 1981. Induced Unsteady Flow in a Dump Combustor,” Progress in Aeronautics and Astronautics 76, 611-624.
Vreman, A.W., Geurts, B. J., Kuerten, J. G. M., Zandbergen, P. J., 1992. A Finite Volume Approach to Large Eddy Simulation of Compressible, Homogeneous Isotropic, Decaying Turbulence. International Journal for Numerical Methods in Fluid 15, 799-816.
Wagner, J. H., Johnson, B. V., Graziani, R. A., Yeh, F. C., 1992. Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow. ASME Journal of Turbomachinery 114, 847-857.
Wang, W.P., Pletcher, R.H., 1996. On The Large Eddy Simulation of A Turbulent Channel Flow With Significant Heat Transfer. Phys. Fluid 8, 3354~3366.
Weiss, J.M., Smith W.A., 1995. Preconditioning Applied to Variable and Constant Density Flow. AIAA Jounal 33, 2050~2057
Westbrook, C. K., Dryer, F. C., 1981. Simplified Reaction Mechanism for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology 27, 31-34.
Winterfeld, G., 1965. On Processes of Turbulent Exchange Behind Flame Holders. Tenth Symposium (International) on Combustion, 1265-1275.
Womersley J.R., 1955. Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient is Known,” J. Physiol. 127, 553-563.
Woodward, P., Colella, P., 1984. The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks. Journal of Computational Physics 54, 115-173.
Yoshizawa, A., 1986. Large-Eddy Simulation of Turbulent Flows. Encyclopedia of Fluid Mechanics 6, N. P. Cheremisionoff Ed., Houston, Gulf Publish Corp., pp. 1277-1297.
Yoshioka, S. O., Masuda, S., 2000. Heat Transfer and Flow Structures in Axisymmetric Impinging Jet Controlled by Vortex Pairing. International Journal of Heat and Fluid Flow 22, 293-401
Yu, S.C.M., Zhao, J.B., 1999. A steady Flow Analysis on The Stented and Non-stented Sidewall Aneurysm Models. Medical Engineering & Physics 21, 133-141.
Zhang, Y. M., Han, J. C., Parsons, J. A., 1993. Surface Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with 60-deg Angled Rib Turbulators. ASME Journal of Turbomachinery, 117, 272-280.
Zhou, F., Lagrone, J., Acharya, S., 2004. Internal Dooling in 4:1 AR Passages at High Rotating Numbers. ASME GT2004-53501.
洪瑞鴻, 2006. 高旋轉速下內置45度方形肋條矩形冷卻通道特性研究.國立清華大學碩士論文
劉通敏, 林信明, 陳世輝, 李宇碩, 1999. 180度銳轉平滑彎道紊流場之數值模擬. 中國機械工程學會第16屆會議論文集。