簡易檢索 / 詳目顯示

研究生: 曹姿萱
Cao, Zih-Syuan
論文名稱: 研究人類Aβ42對果蠅不同神經的影響及其與人類LRRK2 和tau間的交互作用
Investigation of the influence of human Aβ42 on distinct neurons in the Drosophila and its interaction with human LRRK2 and tau
指導教授: 張慧雲
Chang, Hui-Yun
口試委員: 桑自剛
Tzu-Kang Sang
陳俊宏
Chun-Hong Chen
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 48
中文關鍵詞: Aβ42LRRK2tau
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Amyloid beta 42 (Aβ42)是一個短的胜肽,且被認為在阿茲海默症的致病機轉中扮演著重要的角色。而近期在一些研究中顯示Aβ42在許多其他的疾病,像是帕金森氏症、多發性硬化症及與17號染色體相關的额顳痴呆兼帕金森综合症等等的疾病中可能也扮演著一些角色。雖然隨著這些研究的發現Aβ42顯得日趨重要,然而對於它大部分的特性仍然未知。在本篇論文中,我們使用果蠅這個模式生物,並著重在Aβ42的探討。我們顯現出Aβ42在不同種類的神經中可能有不同的影響。這也是第一次去探討Aβ42在多巴胺神經中的影響,我們發現表現Aβ42在多巴胺神經中並不會造成多巴胺神經的凋亡、且會使果蠅增加運動能力並有抗老化的效果。而將Aβ42表現在血清素神經中也會使果蠅增加其運動能力。相反的,在麩胺酸神經中表現Aβ42的果蠅則隨著年齡逐漸顯現出其在運動行為上的缺陷。除此之外,我們也探討Aβ42和其他蛋白像是tau和LRRK2間是否有交互作用,然而在我們的結果中並未看到他們之間有交互作用存在。總而言之,我們的結果提供了一些對於Aβ42在不同神經的特性的一些新的見解,這或許對於了解這些的疾病有著一點幫助。


    Amyloid beta 42 (Aβ42) is a short peptide thought to play a central role in the pathogenesis of Alzheimer's disease (AD). Recently, several studies suggest that Aβ42 might also have roles in many diseases such as Parkinson’s disease (PD), multiple sclerosis (MS), frototemporal dementia with Parkinsonism linked Chromosome 17 (FTDP-17). While Aβ42 is becoming increasingly important, the characteristics of Aβ42 are largely unknown. In present study, we use Drosophula as a model and focus on Aβ42. We show that Aβ42 might have different effects on different type of neurons. It is the first time to explore the influence of Aβ42 in dopaminergic neuron. Surprisingly, we find that expression of Aβ42 in dopaminergic neuron leads no neuron degeneration, increases motor activity and has anti-aging effect. And expression of Aβ42 in serotonergic neuron also increases the motor behavior. In contrast, flies over-expressing Aβ42 in glutamatergic neuron exhibit progressive motor defect. In addition, we also explore the interaction between Aβ42 and other proteins such as tau and LRRK2. However, in our study we cannot find their interaction yet. Taken together, our results provide new insights of characteristics of Aβ42 in different types of neuron.

    Abstract .................................................1 摘要.......................................................2 致謝 ......................................................3 Contents ..................................................4 Introduction ..............................................5 Materials and Methods .....................................9 Drosophila strains and culture ........................... 9 Transgenic human TauP301L flies .......................... 9 Adult fly brain dissection ............................... 9 Adult fly eye image ..................................... 10 Life span assay ......................................... 10 Locomotion assay ........................................ 10 Results ................................................. 12 Over-expression of human Aβ42 in Drosophila eye produced dose-dependent neurodegeneration ........................ 12 Human Aβ42 might not lead to dopaminergic neurodegeneration ......................................................... 13 Over-expression of human Aβ42 in dopaminergic and serotonergic neurons might increase the motor activity .. 14 The flies expressing human Aβ42 in the glutamatergic neurons showed motor deficit .................................... 16 Co-expression of human Aβ42 and LRRK2G2019S during Drosophila eye development .............................. 17 Co-expression of human Aβ42 and LRRK2G2019S in dopaminergic neurons ................................................. 18 The life spans of expression of human Aβ42, LRRK2G2019S and both Aβ42 and LRRK2G2019S using TH-GAL4 driver .......... 19 There is no obviously interaction between human Aβ42 and Tau ......................................................... 19 Discussion .............................................. 21 Figures ................................................. 26 References .............................................. 41

    Aasly JO, Shi M, Sossi V, Stewart T, Johansen KK, Wszolek ZK, Uitti RJ, Hasegawa K, Yokoyama T,Zabetian CP, Kim HM, Leverenz JB, Ginghina C, Armaly J, Edwards KL, Snapinn KW, Stoessl AJ, Zhang J. (2012) Cerebrospinal fluid amyloid β and tau in LRRK2 mutation carriers. Neurology. 78:55-61.
    Alves G, Pedersen KF, Bloem BR, Blennow K, Zetterberg H, Borm GF, Dalaker TO, Beyer MK, Aarsland D, Andreasson U, Lange J, Tysnes OB, Zivadinov R, Larsen JP. (2013) Cerebrospinal fluid amyloid-β and phenotypic heterogeneity in de novo Parkinson’s disease. J Neurol Neurosurg Psychiatry. 84:537-43.
    Angeles DC, Ho P, Chua LL, Wang C, Yap YW, Ng C, Zhou Zd, Lim KL, Wszolek ZK, Wang HY, Tan EK. (2014) Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum Mol Genet. 23:3157-65.
    Augutis K, Axelsson M, Portelius E, Brinkmalm G, Andreasson U, Gustavsson MK, Malmeström C, Lycke J, Blennow K, Zetterberg H, Mattsson N. (2013) Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis Mult Scler. 19:543-52.
    Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL, Pericak-Vance MA. (2009) Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet. 84:35-43.
    Berg D, Schweitzer KJ, Leitner P, Zimprich A, Lichtner P, Belcredi P, Brüssel T, Schulte C, Maass S,Nägele T, Wszolek ZK, Gasser T. (2005) Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease. Brain. 128:3000-11.
    Beyer MK, Alves G, Hwang KS, Babakchanian S, Bronnick KS, Chou YY, Dalaker TO, Kurz MW, Larsen JP, Somme JH, Thompson PM, Tysnes OB, Apostolova LG.(2013) Cerebrospinal Fluid Aβ Levels Correlate With Structural Brain Changes in Parkinson’s Disease. Mov Disord. 28:302-10
    Calingasan NY, Chen J, Kiaei M, Beal MF (2005) Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol Dis. 19:340-7.
    Cattaert D, Birman S (2001) Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J Neurobiol. 48:58-73.
    Chabrier MA, Blurton-Jones M, Agazaryan AA, Nerhus JL, Martinez-Coria H, LaFerla FM. (2012)Soluble Aβ Promotes Wild-Type Tau Pathology in vivo. J Neurosci. 32:17345-50.
    Chang TY, Kuo HC, Lu CS, Wu-Chou YH, Huang CC. ( 2010) Analysis of the LRRK2 Gly2385Arg variant in Alzheimer's disease in Taiwan. Parkinsonism Relat Disord. 16:28-30.
    Chin JH, Ma L, MacTavish D, Jhamandas JH. (2007) Amyloid beta protein modulates glutamate-mediated neurotransmission in the rat basal forebrain: involvement of presynaptic neuronal nicotinic acetylcholine and metabotropic glutamate receptors. J Neurosci. 27:9262-9.
    Cullen WK, Suh YH, Anwyl R, Rowan MJ. (1997) Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. Neuroreport. 8:3213-7.
    Daniels RW, Gelfand MV, Collins CA, DiAntonio A. (2008) Visualizing glutamatergic cell bodies and synapses in Drosophila larval and adult CNS. J Comp Neurol. 508:131-52.
    del Valle Rodríguez A, Didiano D, Desplan C. (2011) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods. 9:47-55.
    Dissanayaka NN, Sellbach A, Matheson S, O'Sullivan JD, Silburn PA, Byrne GJ, Marsh R, Mellick GD. (2010) Anxiety disorders in Parkinson's disease: prevalence and risk factors. Mov Disord. 25:838-45.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL. (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science. 319:1086-9.
    Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F.(2003)Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology. 60:1457-61.
    Fraser KB, Moehle MS, Daher JP, Webber PJ, Williams JY, Stewart CA, Yacoubian TA, Cowell RM, Dokland T, Ye T, Chen D, Siegal GP, Galemmo RA, Tsika E, Moore DJ, Standaert DG, Kojima K, Mobley JA, West AB. (2013) LRRK2 secretion in exosomes is regulated by 14-3-3. Hum Mol Genet. 22:4988-5000
    Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol. 54:618-27.
    Gerrish A, Russo G, Richards A, Moskvina V, Ivanov D, Harold D, Sims R, Abraham R, Hollingworth P, Chapman J et al. (2012) The role of variation at AβPP, PSEN1, PSEN2, and MAPT in late onset Alzheimer's disease. J Alzheimers Dis. 28:377-87.
    Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Trojanowski JQ, Van Deerlin VM. (2006) Biochemical and Pathological Characterization of Lrrk2. Ann Neurol. 59:315-22.
    Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J Neurosci. 29:10582-7.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890
    Goedert M, Spillantini MG (2000) Tau mutations in frontotemporal dementia FTDP-17 and their relevance for Alzheimer's disease. Biochim Biophys Acta. 1502:110-21.
    Goldwurm S, Zini M, Mariani L, Tesei S, Miceli R, Sironi F, Clementi M, Bonifati V, Pezzoli G. (2007)Evaluation of LRRK2 G2019S penetrance: relevance for genetic counseling in Parkinson disease. Neurology. 68:1141-3.
    Grant JL, Ghosn EE, Axtell RC, Herges K, Kuipers HF, Woodling NS, Andreasson K, Herzenberg LA,Herzenberg LA, Steinman L. (2012) Reversal of paralysis and reduced inflammation from peripheral administration of β-amyloid in TH1 and TH17 versions of experimental autoimmune encephalomyelitis. Sci Transl Med. 4:145ra105.
    Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev. 4:372-97.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol. 8:101-12.
    Halliday G, Hely M, Reid W, Morris J. (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 115:409–415
    Hazell AS. (2007)Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int. 50:941-53.
    Iijima K, Gatt A, Iijima-Ando K. (2010) Tau Ser262 phosphorylation is critical for Abeta42-induced tau toxicity in a transgenic Drosophila model of Alzheimer's disease. Hum Mol Genet. 19:2947-57.
    Johnson VE, Stewart W, Smith DH. (2010) Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci. 11:361-70.
    Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK. (2008) Striatal β-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol. 67:155-61.
    Karran E, Mercken M, De Strooper B. (2011) The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov. 10:698-712.
    Kamyshev NG, Smirnova GP, Savvateeva EV, Medvedeva AV, Ponomarenko VV. (1983) The influence of serotonin and p-chlorophenylalanine on locomotor activity of Drosophila melanogaster. Pharmacol Biochem Behav. 18:677-81.
    Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, Waligórska T, Taylor P, Pan S,Frasier M, Marek K, Kieburtz K, Jennings D, Simuni T, Tanner CM, Singleton A, Toga AW, Chowdhury S,Mollenhauer B, Trojanowski JQ, Shaw LM; Parkinson's Progression Markers Initiative. (2013) Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. JAMA Neurol. 70:1277-87.
    Lau A, Tymianski M. (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460:525-42.
    Lesage S, Brice A (2009) Parkinson's disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 18:R48-59.
    Li HL, Lu SJ, Sun YM, Guo QH, Sadovnick AD, Wu ZY. (2013) The LRRK2 R1628P variant plays a protective role in Han Chinese population with Alzheimer's disease. CNS Neurosci Ther. 19:207-15.
    Lin CH, Tsai PI, Wu RM, Chien CT. (2010) LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3ß. J Neurosci. 30:13138-49.
    Li J, Zhu M, Manning-Bog AB, Di Monte DA, Fink AL. (2004) Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson's and Alzheimer's disease. FASEB J. 18(9):962-4.
    Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D. (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 62:788-801.
    Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H, Ren Q, Jiao Y, Sawa A, Moran T, Ross CA, Montell C, Smith WW. (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A. 105:2693-8.
    Li X, Patel JC, Wang J, Avshalumov MV, Nicholson C, Buxbaum JD, Elder GA, Rice ME, Yue Z. (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson's disease mutation G2019S. J Neurosci. 30:1788-97.
    Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet. 20:2495-509
    Matos M, Augusto E, Oliveira CR, Agostinho P. (2008) Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience. 156:898-910.
    Melrose HL, Dächsel JC, Behrouz B, Lincoln SJ, Yue M, Hinkle KM, Kent CB, Korvatska E, Taylor JP, Witten L, Liang YQ, Beevers JE, Boules M, Dugger BN, Serna VA, Gaukhman A, Yu X, Castanedes-Casey M, Braithwaite AT, Ogholikhan S, Yu N, Bass D, Tyndall G, Schellenberg GD, Dickson DW, Janus C, Farrer MJ. (2010) Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis. 40:503-17.
    Mhatre SD, Satyasi V, Killen M, Paddock BE, Moir RD, Saunders AJ, Marenda DR. (2014) Synaptic abnormalities in a Drosophila model of Alzheimer’s disease. Dis Model Mech. 7:373-85.
    Murray B, Lynch T, Farrell M. (2005) Clinicopathological features of the tauopathies. Biochem Soc Trans. 33:595-9.
    Myers AJ, Kaleem M, Marlowe L, Pittman AM, Lees AJ, Fung HC, Duckworth J, Leung D, Gibson A, Morris CM, de Silva R,Hardy J. (2005) The H1c haplotype at the MAPT locus is associated with Alzheimer's disease. Hum Mol Genet. 14:2399-404.
    Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaleem M, Marlowe L, Lees A, Leung D, McKeith IG, Perry RH, Morris CM,Trojanowski JQ, Clark C, Karlawish J, Arnold S, Forman MS, Van Deerlin V, de Silva R, Hardy J. (2007) The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol Dis. 25:561-70.
    Ng CH, Mok SZ, Koh C, Ouyang X, Fivaz ML, Tan EK, Dawson VL, Dawson TM, Yu F, Lim KL. (2009) Parkin Protects Against LRRK2 G2019S Mutant-induced Dopaminergic Neurodegeneration in Drosophila. J Neurosci. 29:11257-62.
    Nichols DE, Nichols CD. (2008) Serotonin receptors. Chem Rev. 108:1614-41.
    Pandey UB, Nichols CD. (2011) Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacol Rev. 63:411-36.
    Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R. (2002) Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav Genet. 32:89-94.
    Pericak-Vance MA, Bass MP, Yamaoka LH, Gaskell PC, Scott WK, Terwedow HA, Menold MM, Conneally PM, Small GW, Vance JM, Saunders AM, Roses AD, Haines JL. (1997) Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA. 278:1237-41.
    Rajput A, Dickson DW, Robinson CA, Ross OA, Dächsel JC, Lincoln SJ, Cobb SA, Rajput ML, Farrer MJ (2006) Parkinsonism, Lrrk2 G2019S, and tau neuropathology. Neurology. 67:1506-8.
    Revett TJ, Baker GB, Jhamandas J, Kar S. (2013) Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci.38:6-23.
    Riemensperger T, Isabel G, Coulom H, Neuser K, Seugnet L, Kume K, Iché-Torres M, Cassar M, Strauss R, Preat T, Hirsh J, Birman S. (2011) Behavioral consequences of dopamine deficiency in the Drosophila central nervous system. Proc Natl Acad Sci U S A. 108:834-9.
    Roccatagliata G, Albano C, Cocito L, Maffini M. (1979) Interactions between central monoaminergic systems: dopamine-serotonin. J Neurol Neurosurg Psychiatry. 42:1159-62.
    Ross OA, Toft M, Whittle AJ, Johnson JL, Papapetropoulos S, Mash DC, Litvan I, Gordon MF, Wszolek ZK, Farrer MJ, Dickson DW. (2006) Lrrk2 and Lewy body disease. Ann Neurol. 59:388-93.
    Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC, Maidment NT, Krantz DE, Jackson GR. (2007) A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci. 27:981-92.
    Scheff SW, Price DA. (2006) Alzheimer's disease-related alterations in synaptic density: neocortex and hippocampus. J Alzheimers Dis.9:101-15.
    Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev. 81:741-66
    Selkoe DJ; American College of Physicians; American Physiological Society. (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med. 140:627-38.
    Sierra M, González-Aramburu I, Sánchez-Juan P, Sánchez-Quintana C, Polo JM, Berciano J, Combarros O, Infante J. (2011) High frequency and reduced penetrance of LRRK2 G2019S mutation among Parkinson's disease patients in Cantabria (Spain). Mov Disord. 26:2343-6.
    Sjögren M1, Davidsson P, Wallin A, Granérus AK, Grundström E, Askmark H, Vanmechelen E, Blennow K (2002) Decreased CSF-beta-amyloid 42 in Alzheimer's disease and amyotrophic lateral sclerosis may reflect mismetabolism of beta-amyloid induced by disparate mechanisms. Dement Geriatr Cogn Disord. 13:112-8.
    Speretta E, Jahn TR, Tartaglia GG, Favrin G, Barros TP, Imarisio S, Lomas DA, Luheshi LM, Crowther DC, Dobson CM. (2012) Expression in drosophila of tandem amyloid β peptides provides insights into links between aggregation and neurotoxicity. J Biol Chem. 287:20748-54.
    Storga D, Vrecko K, Birkmayer JG, Reibnegger G. (1996) Monoaminergic neurotransmitters, their precursors and metabolites in brains of Alzheimer patients. Neurosci Lett. 203(1):29-32.
    Talpalar AE, Kiehn O. (2010) Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CpG. Front Neural Circuits. 4:19.
    Terwel D, Muyllaert D, Dewachter I, Borghgraef P, Croes S, Devijver H, Van Leuven F. (2008) Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol. 172:786-98.
    van Groen T, Puurunen K, Mäki HM, Sivenius J, Jolkkonen J. (2005) Transformation of diffuse beta-amyloid precursor protein and beta-amyloiddeposits to plaques in the thalamus after transient occlusion of the middle cerebral artery in rats. Stroke. 36:1551-6.
    Vitali A, Piccini A, Borghi R, Fornaro P, Siedlak SL, Smith MA, Gambetti P, Ghetti B, Tabaton M. (2004) Soluble amyloid β-protein is increased in frontotemporal dementia with tau gene mutations. J Alzheimers Dis. 6:45-51.
    Vu HT, Shimanouchi T, Ishikawa D, Ishikawa T, Yagi H, Goto Y, Umakoshi H, Kuboi R (2013) Effect of liposome membranes on disaggregation of amyloid β fibrils by dopamine. Biochem Eng J. 71:118-126
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X.(2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A. 105:19318-23.
    West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, Dawson VL, Dawson TM. (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 102:16842-7.
    White KE, Humphrey DM, Hirth F. (2010) The dopaminergic system in the aging brain of Drosophila. Front Neurosci. 4:205.
    Whitworth AJ, Theodore DA, Greene JC, Benes H, Wes PD, Pallanck LJ. (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease. Proc Natl Acad Sci U S A. 102:8024-9.
    Wu TH, Lu YN, Chuang CL, Wu CL, Chiang AS, Krantz DE, Chang HY. (2013) Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. Acta Neuropathol. 125:711-25.
    Xie W, Wan OW, Chung KK.(2010) New insights into the role of mitochondrial dysfunction and protein aggregation in Parkinson's disease. Biochim Biophys Acta. 1802:935-41.
    Yatin SM, Varadarajan S, Link CD, Butterfield DA. (1999) In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42). Neurobiol Aging. 20:325-30
    Yue Z, Lachenmayer ML. (2011) Genetic LRRK2 models of Parkinson's disease: Dissecting the pathogenic pathway and exploring clinical applications. Mov Disord. 26:1386-97.
    Zabetian CP, Lauricella CJ, Tsuang DW, Leverenz JB, Schellenberg GD, Payami H. (2006) Analysis of the LRRK2 G2019S mutation in Alzheimer Disease. Arch Neurol.63:156-7.
    Zhang J, Mattison HA, Liu C, Ginghina C, Auinger P, McDermott MP, Stewart T, Kang UJ; Parkinson Study Group DATATOP Investigators, Cain KC, Shi M.(2013)Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathol. 126:671-82
    Zhang Y, Xing S, Zhang J, Li J, Li C, Pei Z, Zeng J (2011) Reduction of β-amyloid deposits by γ-secretase inhibitor is associated with the attenuation of secondary damage in the ipsilateral thalamus and sensory functional improvement after focal cortical infarction in hypertensive rats. J Cereb Blood Flow Metab. 31:572-9.
    Zhao Y, Ho P, Yih Y, Chen C, Lee WL, Tan EK. (2011) LRRK2 variant associated with Alzheimer's disease. Neurobiol Aging. 32:1990-3.
    Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV (1999)Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron. 24:347-61.
    Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Kachergus J, Hulihan M, Uitti RJ, Calne DB, Stoessl AJ, Pfeiffer RF, Patenge N, Carbajal IC, Vieregge P, Asmus F, Müller-Myhsok B, Dickson DW,Meitinger T, Strom TM, Wszolek ZK, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleom

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE