簡易檢索 / 詳目顯示

研究生: 鄭富憶
Fu-Yi Cheng
論文名稱: 1310nm含電子阻障層之異質埋入式波導雷射之研究及動態特性量測
Characterization and Measurement of Dynamic Response for 1310 nm Buried-Heterostructure Laser Diodes with Electron-Stop Layer
指導教授: 吳孟奇
Meng-Chyi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 異質埋入型波導雷射電子阻障層掩埋式異質結構
外文關鍵詞: BH LDs, electron stop layer, Buried-Heterostructure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今使用於光纖通信的1310 nm波長LD光源,主動層所使用之材料系統主要分為兩大類:InGaAsP材料與AlGaInAs材料。然而前者具有較低的導電帶能隙差 (Conduction-Band Offset),導致雷射二極體高溫操作特性不佳,因此,為提供優越的橫向光場侷限性、提高電流注入效率並增加材料熱導係數,於雷射波導結構設計上,可採用Buried-Heterostructure (BH)波導型式;此外,相較以AlGaInAs作為BH-type雷射二極體之主動層材料,採用InGaAsP材料可以避免鋁容易氧化而造成元件二次磊晶良率不佳的問題。為更進一步提高雷射二極體之熱穩定性,本研究更加入電子阻障層結構,解決載子因熱離子躍遷 ( Thermo-ionic transition) 所造成之損耗並提高主動層內部載子侷限性。
    綜合上述,本論文以InGaAsP材料為主動層,製作具備電子阻障結構之掩埋式異質結構(Buried-Heterostructure)波導雷射。以期提升元件高溫的忍耐性,並且有效降低串聯電阻降低因I2R產生的熱源,使得雷射工作效率提升,也相對滿足通訊協定之操作標準,降低通訊模組散熱問題以節省安裝TE cooler 之製作成本,大大增加市場競爭力。另外,雷射光束之發散角將左右光纖耦光效率,一旦θ┴-θ//比例能接近1,雷射輸出圖樣會接近理想之圓型光束,提高光纖耦光效率。由實驗結果顯示,元件之室溫臨界電流約在12mA,單邊轉換效率為0.235 W/A,遠場角之θ┴-θ//比例為1.17;此外,為提升實用性與市場應用價值,本元件最後經由TO-56 Header封裝成通訊次模組。透過動態量測分析,大訊號調變頻寬可達10Gbps,小訊號調變頻寬亦可達9.17GHz。


    Nowadays, laser diodes (LDs) emitted at 1310 nm have extensively been used in optical fiber communications. Generally, there are two preferable gain mediums commonly be used as the active layers, i. e., InGaAsP and AlGaInAs-based material systems. However the former has the lower conduction-band offset that would cause the degraded performance of LDs at high temperatures. To provide superior optical field confinement, efficient current injection and higher material thermal conductivity, the waveguide structure is made from buried-heterostructure (BH). In addition, the material for active region consists of InGaAsP system, therefore, the regrowth techniques have high yield due to Al-free and no material oxidizing. Furthermore, in order to enhance thermo-stability and to decrease carrier losses from thermo-ionic transition, the electron-stop-layer is constructed near active region and forms an additional electron barrier, lead to higher carrier confinement.
    Based on mentioned above, in this study, the 1300 nm InGaAsP BH LDs with electron-stop-layer were fabricated. We expect that these LDs would present promoted thermal characteristics and could decrease series-resistance to lower Joule effects (I2R) and to achieve high quantum efficiency. Besides, it will ensure the strength of competition in the communication market by broadening LDs’ modulation bandwidth, satisfying the 10 Gb Ethernet standard, and eliminating the Peltier cooler. On the other hand, since the far field angle and distribution pattern of laser output beam will dominate the coupling efficiency, the relatively high coupling efficiency will be obtained by tailoring output beam as circular one. In other words, the ideal case for the far field pattern is that the ratio between θ┴ and θ// can approach 1. By the experimental result, it demonstrates that in room temperature the threshold current of LDs is 12 mA, the as-cleaved single facet slope efficiency is approximately 0.235 W/A, the far field angle ratio of θ┴-θ// is 1.17; In addition, take industrial applications and business values into consideration, the devices finally were packaged by TO-56 header as subassembly modules. By the dynamic measure analysis, the large signal modulation bandwidth is as high as 10Gbps; the small signal modulation bandwidth may also higher than 9.17GHz.

    目錄 I 表目錄 II 圖目錄 II 第一章 序論 1 簡介 1 第二章 理論說明 5 2.1 理論說明 5 2.1.1應力型結構之Bulk能隙計算 5 2.1.2 Square Well Potential的有限能障模型 6 2.1.3 歐傑再複合和架帶內吸收損失現象 9 2.1.3.1 歐傑再複合 9 2.1.3.2 價帶內吸收 11 第三章 元件製程 12 製程步驟 12 第四章 特性量測 15 4.1 靜態特性量測 15 4.1.1 L-I特性及I-V特性量測 15 4.1.2 遠場分佈及發散角: 15 4.2 動態特性量測 15 4.2.1 晶粒封固製程(Die Bonding) 16 4.2.2 打線製程(Wire Bonding Process) 16 4.2.3 眼圖(Eye Pattern)量測 17 4.2.4 調變頻寬(Modulation Bandwidth) 19 4.2.5 實驗結果 21 第五章 結論 23 參考文獻 25 表目錄 表( 1) GaxIn1-xAsyP1-y材料系統之材料參數 26 表( 2) Type A雷射的遠場分佈 27 表(3) Type B雷射的遠場分佈 27 表(4) Type C雷射的遠場分佈 27 圖目錄 圖1.1 含electron stop layer層之雷射結構圖 28 圖2.1 應力型鍵結的能帶結構圖示 29 圖.2.2(a) 寬為L,有限能障高的量子井能階與波函數示意圖 30 圖.2.2(b) 有限量子井的衰減常數與波函數之圖形解 31 圖2.3 三種band-to-band歐傑再復合過程 32 圖2.4 價帶內吸收過程 33 圖3.1 金屬化製程流程圖 34 圖4.1 Die bond封裝圖 35 圖4.2 打線流程圖 36 圖4.3 眼圖量測架構 37 圖4.4 眼圖形成概念 38 圖4.5 1準位擷取示意圖 39 圖4.6 消光比定義 40 圖4.7 眼罩示意圖 41 圖4.8 光設備的調變轉移函數示意圖 42 圖4.9 光波設備分析儀方塊圖及量測模式 43 圖4.10 E/O斜率响應度 44 圖.4.11(a) Type A的變溫L-I特性。內崁的圖片為臨界電流和斜率效率(slope efficiency)在不同溫度下的關係 45 圖4.11(b) Type A在不同腔體長度下L-I特性,內崁圖片為不同腔體長度下的反置外部效率,經由計算可推估元件的內部量子效率及內部損失 46 圖4.11(c) Type A的I-V特性,內崁圖片為輸出光頻譜 47 圖4.12(a) Type B的變溫L-I特性。內崁的圖片為臨界電流和斜率效 率(slope efficiency)在不同溫度下的關係 48 圖4.12(b) Type B在不同腔體長度下L-I特性,內崁圖片為不同腔體長度下的反置外部效率,經由計算可推估元件的內部量子效率及內部損失 49 圖4.12(c) Type B的I-V特性,內崁圖片為輸出光頻譜 50 圖4.13(a) Type C的變溫L-I特性。內崁的圖片為臨界電流和斜率效率(slope efficiency)在不同溫度下的關係。 51 圖4.13(b) Type C雷射在不同腔體長度下L-I特性,內崁圖片為不同腔體長度下的反置外部效率,經由計算可推估元件的內部量子效率及內部損失 52 圖4.13(c) Type A的I-V特性,內崁圖片為輸出光頻譜 53 圖4.14 探針電壓及電阻在不同注入電流下的關係圖 54 圖4.14(a)~(d)分別為Type A雷射在電流20mA、30mA、40mA、50mA時的遠場分佈圖形 55 圖4.15(a)~(c)分別為Type B雷射在電流20mA、30mA、40mA時的遠場分佈圖形 56 圖4.16(a)~(c)分別為Type C雷射在電流20mA、30mA、40mA時的遠場分佈圖形 57 圖4.17 Type A雷射10Gb/s眼圖 58 圖4.18 Type A雷射2.488Gb/s眼圖 59 圖4.19 Type B雷射2.488Gb/s眼圖 60 圖4.20 Type A雷射頻率响應圖 61 圖4.21 Type B雷射頻率响應圖 62 圖4.22 Type C雷射頻率响應圖 63 圖4.23 Type A雷射阻抗匹配設計前之頻率响應圖 64 圖4.24 Type A雷射阻抗匹配設計前之頻率响應圖 65

    [1] S. Adachi, “Material parameters of In1-xGaxAsyP1-y and related binaries”,J.Appl. Phys.,vol.53,pp.8775-8792, 1982
    [2] T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained-layer quantum well”, IEEE J. Quantum Electron., vol. 30,pp.562-570, 1994
    [3] E. H. Li, “Material parameters of InGaAsP and InAlGaAssystems for use in quantum well structures at low and room temperatures”, Phys. E, vol.5, pp.215-273, 2000.
    [4] P. J. A. Thijs, L. F. Tiemeijer, J.J.M. Binsma, and T. van Dongen, ”Progress in long –wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifier”, IEEE J. Quantum Electron., vol 30, pp. 477-499, 1994.
    [5] T. Kamijoh, H. Horikawa, Y. Matsui, Y. K. Sin, M. Nakajima, C . Q. Xu, and Y. Ogawa, “Improved operation characteristics of long-wavelength laser using strained MQW active layers”, IEEE J. Quantum Electron., vol.30, pp. 524-532,1994.
    [6] N. K. Dutta and R. J. Nelson, “The case for Auger recombination in In1-xGaxAsyP1-y”, J. App. Phys., Vol. 53, pp. 74-92, 1982.
    [7] J. Wang, P. von Allmen, J. P. Leburton, and K. J. Linden, “Auger recombination in long-wavelength strained layer quantum-well structures”, IEEE J. Quantum Electron., vol. 31, pp.864-875, 1995
    [8] Peter J. A. Thijs, Teus van Dongen, Luuk F. Tiemeijer, and J. J. M. Binsma, “High-performance λ=1.3μm InGaAsP/InP strained-layer quantum well laser,” IEEE J. of Lightwave Technology, vol. 12, no.1, pp.28~37, 1994.
    [9] Dennis Derickson, ”Fiber Optic Test and Measurement”

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE