研究生: |
楊明達 Yang, Ming-Da |
---|---|
論文名稱: |
功能性磁性奈米粒子生醫應用 Functionalization of magnetic nanoparticles for applications in biomedicine |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
張慶瑞
Chang, Ching-Ray 陳三元 Chen, San-Yuan 王先知 Wang, Shian-Jy 唐敏注 Tung, Mean-Jue |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 核磁共振 、慈熱效應 、生物感測 |
外文關鍵詞: | MRI, hyperthermia, Bio-sensor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著醫學的進步,治療過程通過診斷和治療的結合來提升治療功效,並能夠早期發現與治療疾病。因此,生物醫學研究努力致力於提高診斷的靈敏度和準確性,以便早期診斷並且提供更好的治療方法。本論文研究的目的是研究磁性奈米顆粒的功能化及其在生物醫學中的應用,包括核磁共振(診斷),磁熱效應(治療)和生物感測器。
第一部分描述了藉由調整殼層奈米粒子的磁性相互作用,能夠變成高效診斷與治療的多功能磁性奈米顆粒。氧化鐵磁性奈米顆粒(IONP)的尺寸和表面處理使得可用於同時增強磁共振圖像(MRI)對比和有效提升熱治療的溫升效率。然而,為了避免磁性奈米顆粒聚集使用超順磁性顆粒大大限制了它們的效能。在這裡,我們證明奈米粒子之間的磁相互作用可以通過殼層結構來操縱,以增強MRI的顯影對比和磁熱吸收溫升效率。非常值得注意的是,我們可以控制磁場下顆粒排列組裝的磁性配置,以提高顯影劑的弛豫特性和熱療效果,使得同時診斷與治療成為可能。在腫瘤實驗研究證明,MRI掃描可以清楚地診斷腫瘤細胞,並且通過使用相同的FePt @ IONP來進行熱治療,腫瘤大小顯著減少,實現同時診斷與治療的概念。
第二部分描述了磁性奈米粒子在磁場中排列的熱療效應。對於磁熱吸收率(SAR),可以藉由調整磁各向異性,顆粒尺寸或飽和磁化強度來增強功耗。如何調整奈米粒子的磁性並最大化損耗功率,這是磁熱轉換效率的衡量標準。近年來,研究人員通過磁硬和軟磁的殼層結構之間的交互耦合證明了磁熱感應效率顯著的提高。在這項研究中,我們發現磁性配置是提高熱療效率的關鍵重要因素之一。
最後一部分研究是針對磁性立方體和殼層結構的奈米粒子感測器。由於磁場下的獨特磁化率,磁性顆粒也可作為靈敏的生醫感測器。使用新型奈米粒子感測器可以區分IONP和FePt @ IONP的粒徑和磁旋轉模式。FePt @ IONP具有特定的旋轉模式,在AC磁場下能觀察到具有的脈衝離子電流信號。因此,開發殼層結構奈米粒子作為簡單生物感測技術是一個新的生醫應用契機。
With the advancement of medicine, the medical treatment process requires highly treatment efficacy by the combination of diagnostics and therapeutics. Early detection and treatment of disease is the most important component of a favorable prognosis. Therefore, tremendous efforts in biomedical research have been devoted to improving the sensitivity and accuracy of the diagnosis with the aim of early diagnosis and possibly better efficacy of the treatment methods. The research is to study functionalization of magnetic NPs and their applications in biomedicine, including MRI (diagnosis), hyperthermia (therapy), and bio-sensor.
The first part describes the tuning magnetic interaction of multifunctional core-shell nanoparticles for highly effective theranostics. Controlled-size and surface treatment of iron oxide magnetic nanoparticles (IONPs) make one-stage combination feasible for enhanced magnetic resonance image (MRI) contrast and effective hyperthermia. However, superparamagnetic behavior, essential for avoiding aggregation of magnetic NPs, substantially limits their performance. Here, we demonstrate that magnetic interaction among nanoparticles can be manipulated by core-shell structure to enhance the resolution of MRI and specific absorption rate of nanoparticles. It is rather remarkable that we can control the magnetic configuration of assembly shape under the magnetic field to improve relaxivity of contrast agent and effectiveness of hyperthermia, making theranostics feasible. Our in-vivo tumor study reveals that the tumor cells can be clearly diagnosed during MRI scan and the tumor size is substantially reduced through hyperthermia therapy by using the same FePt@IONPs, realizing the concept of theranostics.
The second part describes the hyperthermia effects of magnetic nanoparticles in aligned magnetic fields. As for the specific absorption rate (SAR), power dissipation can be enhanced by tuning magnetic anisotropy, particle size or saturation magnetization. Tuning the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. In recent years, the researcher demonstrates a significant increase in the efficiency of magnetic thermal induction by the exchange coupling between a magnetically hard core and magnetically soft shell. In this research, we found magnetic configuration is one of the key factor for enhancing the hyperthermia efficiency
The last part is the nanoparticles detector for magnetic cube and core-shell structure. Magnetic NPs also be the sensitive bio sensor by the distinctive susceptibility under the magnetic field. Using the novel nanoparticles detector can distinguish the particle size and specific magnetic rotation of IONP and FePt@IONP. The FePt@IONPs have the specific rotation mode to be observed the pulse ion current signal with AC magnetic field. Hence, it is a good chance to develop a simple biosensing technology with the core-shell structure.
1. N.H. Cho, et al., A multifunctional core–shell nanoparticle for dendritic cell-based cancer immunotherapy. Nature Nanotechnology volume 6, pages 675–682 (2011)
2. Y. Huang, et al., Mn3[Co(CN)6]2@SiO2 Core-shell Nanocubes: Novel bimodal contrast agents for MRI and optical imaging, Scientific Reports volume 3, Article number: 2647 (2013)
3. I. Hilger, et al., Iron oxide-based nanostructures for MRI and magnetic hyperthermia, NANOMEDICINE VOL. 7, NO. 9 (2012)
4. D. YOO, et al., Theranostic Magnetic Nanoparticles, Acc. Chem. Res., 2011, 44 (10), pp 863–874
5. J. GAO, et al., Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications, Acc. Chem. Res., 2009, 42 (8), pp 1097–1107
6. J.-s. Choi, et al., Self-confirming "AND" logic nanoparticles for fault-free MRI. J. Am. Chem. Soc., 2010, 132 (32), pp 11015–11017
7. Q. Zhao, et al., Magnetic Nanoparticle-Based Hyperthermia for Head & Neck Cancer in Mouse Models, Theranostics 2012; 2(1):113-121.
8. O. L. Gobbo, Magnetic Nanoparticles in Cancer Theranostics, Theranostics 2015; 5(11):1249-1263.
9. I. Koh, et al., Magnetic Nanoparticle Sensors, Sensors (Basel). 2009;9(10):8130-45.
10. C.-Y. Hong, et al., Magnetic susceptibility reduction method for magnetically labeled immunoassay, APPLIED PHYSICS LETTERS 88, 212512 (2006)
11. Jiri Kudr, et al., Fabrication of solid‐state nanopores and its perspectives, Electrophoresis 2015, 36, 2367–2379
12. J.-H. Lee, et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nature Medicine volume 13, pages 95–99 (2007)
13. Y.-w. Jun, et al., Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging, J. Am. Chem. Soc., 2005, 127 (16), pp 5732–5733
14. S. Tong, et al., Coating Optimization of Superparamagnetic Iron Oxide Nanoparticles for High T2 Relaxivity, Nano Lett., 2010, 10 (11), pp 4607–4613
15. U. I. Tromsdorf, et al., Size and Surface Effects on the MRI Relaxivity of Manganese Ferrite Nanoparticle Contrast Agents, Nano Lett., 2007, 7 (8), pp 2422–2427
16. C. Paquet, et al., Clusters of Superparamagnetic Iron Oxide Nanoparticles Encapsulated in a Hydrogel: A Particle Architecture Generating a Synergistic Enhancement of the T2 Relaxation, ACS Nano, 2011, 5 (4), pp 3104–3112
17. J.‐H. Lee, et al., Dual‐Mode Nanoparticle Probes for High‐Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma, Angewandte Chemie 45 (48) (2006)
18. H. Khurshid, et al., Core/shell structured iron/iron-oxide nanoparticles as excellent MRI contrast enhancement agents, Journal of Magnetism and Magnetic Materials Volume 331, April 2013, Pages 17-20
19. J. Gao, et al., Multifunctional Yolk-Shell Nanoparticles: A Potential MRI Contrast and Anticancer Agent, J. Am. Chem. Soc., 2008, 130 (35), pp 11828–11833
20. S. Kralj, et al., Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles, ACS Nano, 2015, 9 (10), pp 9700–9707
21. S. A. Corr, et al., Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents, J. Am. Chem. Soc., 2008, 130 (13), pp 4214–4215
22. H. Jaganathan, et al., Examining MRI Contrast in Three-Dimensional Cell Culture Phantoms with DNA-Templated Nanoparticle Chains, ACS Appl. Mater. Interfaces, 2011, 3 (4), pp 1282–1288
23. O. Zurkiya, et al., MagA Is Sufficient for Producing Magnetic Nanoparticles in Mammalian Cells, Making it an MRI Reporter, Magn Reson Med. 2008 June ; 59(6): 1225–1231.
24. A. Hervault, et al., Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer, Nanoscale, 2014, 6, 11553–11573
25. J.-H. Lee, et al., Exchange-coupled magnetic nanoparticles for efficient heat induction, Nature Nanotechnology volume 6, pages 418–422 (2011)
26. S.-h. Noh, et al., Nanoscale Magnetism Control via Surface and Exchange Anisotropy for Optimized Ferrimagnetic Hysteresis, Nano Lett., 2012, 12 (7), pp 3716–3721
27. L. C. Branquinho, et al., Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia, Scientific Reports volume 3, Article number: 2887 (2013)
28. C. Martinez-Boubeta, et al., Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications, Scientific Reports volume 3, Article number: 1652 (2013)
29. E. Myrovali, et al., Arrangement at the nanoscale: Effect on magnetic particle
hyperthermia, Scientific Reports volume 6, Article number: 37934 (2016)
30. K. Simeonidis, et al., In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice, Scientific Reports volume 6, Article number: 38382 (2016)
31. J. CHEON, et al., Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology, Acc. Chem. Res., 2008, 41 (12), pp 1630–1640
32. D. Kozak, et al., Advances in resistive pulse sensors: Devices bridging the void between molecular and microscopic detection, nanotoday Volume 6, Issue 5, October 2011, Pages 531-545
33. J. K Rosenstein, et al., integrated nanopore sensing platform with sub-microsecond temporal resolution, Nature Methods volume 9, pages 487–492 (2012)
34. C.-H. Ho, et al., Shape-Controlled Growth and Shape-Dependent Cation Site Occupancy of Monodisperse Fe3O4 Nanoparticles, Chem. Mater., 2011, 23 (7), pp 1753–1760
35. J. Xie , et al., Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells, Adv. Mater. 2007, 19, 3163–3166
36. K. L. Krycka, et al., Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles, Phys. Rev. Lett. 104, 207203
37. M.A. Al-Nasassrah, et al., The effect of an increase in chain length on the mechanical properties of polyethylene glycols, Eur J Pharm Biopharm. 1998 Jul;46(1):31-8.
38. V. Singh, et al., Dynamics of magnetic nanoparticle suspensions. J. Phys. D: Appl. Phys. 2009, 42, 245006
39. D. Eberbeck, et al., Aggregation behaviour of magnetic nanoparticle suspensions investigated by magnetorelaxometry, J. Phys.: Condens. Matter. 2006, 18, S2829.
40. P. C. Fannint, S. W. Charles, The study of a ferrofluid exhibiting both Brownian and Neel relaxation, J. Phys. D: Appl. Phys. 1989, 22, 187
41. J. P. Fortin, et al., Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, J. Am. Chem. Soc., 2007, 129 (9), pp 2628–2635
42. B. Hammouda, et al., Insight into Clustering in Poly(ethylene oxide) Solutions, Macromolecules, 2004, 37 (18), pp 6932–6937
43. S. R. Kline, et al., Reduction and analysis of SANS and USANS data using IGOR Pro, J. Appl. Cryst. 39, 895–900 (2006)
44. https://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
45. K. Krycka, et al., Polarization-analyzed small-angle neutron scattering. II. Mathematical angular analysis, J. Appl. Crystallogr. 45, 554 (2012)
46. J. M. THOMAS, et al., Electron Holography for the Study of Magnetic Nanomaterials, Acc. Chem. Res. 2008, 41, 665
47. E. Snoeck, et al., Magnetic Configurations of 30 nm Iron Nanocubes Studied by Electron Holography, Nano Lett., 2008, 8 (12), pp 4293–4298
48. L. M. Lacroix, et al., Stabilizing Vortices in Interacting Nano-Objects: A Chemical Approach, Nano Lett., 2012, 12 (6), pp 3245–3250
49. J. M. THOMAS, et al., Electron Holography for the Study of Magnetic Nanomaterials, Acc. Chem. Res. 2008, 41, 665.
50. G. Singh, et al., Magnetic field-induced self-assembly of iron oxide nanocubes, Farad. Discuss. 2015, 181, 403.
51. S. Singamaneni, et al., Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications, J. Mater. Chem. 2011, 21, 16819.
52. H. W. de Haan, Mechanisms of proton spin dephasing in a system of magnetic particles, Magn. Reson. Med. 2011, 66, 1748.
53. R. A. Brooks, et al., On T2-shortening by weakly magnetized particles: the chemical exchange model, Magn. Reson. Med. 2001, 45, 1014
54. C Klifa, et al., Quantification of background enhancement in breast magnetic resonance imaging, J Magn Reson Imaging 2011, 33, 1229