研究生: |
張峻銘 Chang, Juyn-Ming |
---|---|
論文名稱: |
膠原蛋白模擬胜肽對貝它類澱粉蛋白 Aβ(16-22) 聚集影響的探討 The effects of collagen mimetic peptides on the aggregation of Aβ(16-22) |
指導教授: |
洪嘉呈
Horng, Jia-Cherng |
口試委員: |
陳佩燁
Rita Pei-Yeh 江昀緯 Yun-Wei Chiang 洪嘉呈 Jia-Cherng Horng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 膠原蛋白模擬胜肽對貝它類澱粉蛋白 Aβ(16-22) 聚集影響的探討 |
外文關鍵詞: | The effects of collagen mimetic peptides on the aggregation of Aβ(16-22) |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
阿茲海默症是神經退化性疾病的一種主要疾病,其主要的病理特徵是神經細胞內纖維化糾結以及腦細胞外老年斑塊,而貝它類澱粉蛋白的聚集則是造成老年斑塊的主要原因。儘管貝它類澱粉蛋白已經被廣泛的研究,但其沉積聚集的機制尚未清楚。本次實驗旨在探討膠原蛋白序列對貝它類澱粉蛋白的抑制效果,並分析貝它類澱粉片段序列蛋白對膠原蛋白三股螺旋結構穩定性、摺疊速率的影響。
本研究中,我們選擇貝它類澱粉蛋白中最重要的一段胺基酸序列 A(16-12) ( KLVFFAE) 來做研究,合成一系列接上膠原蛋白相關序列 (POG)n 之 A 相關胜肽鏈共八段: 未接上膠原蛋白序列 (WT-A (16-22)),在碳端的位置接上六個POG( A(POG)6 )、七個 POG ( A(POG)7 ) 、十個 POG ( A(POG)10 ),在氮端位置接上七個 POG ( (POG)7A ) 、十個 POG ( (POG)10A ) 及單純的膠原蛋白 (POG)7、(POG)10。利用螢光光譜儀、TEM、CD、DLS以及 FT-IR來探討這些胜肽鏈是否對 A 沉積具有抑制的效果。
經由 CD 測量發現 A(16-22) 位於胜肽鏈之 N 端時會妨礙膠原蛋白三股螺旋結構的摺疊,使熱穩定性降低;但 A(16-22) 位於胜肽鏈之 C 端時則會幫助三股螺旋結構的摺疊使熱穩定性上升。從觀察 A 聚集現象我們發現無論在 A (16-22) 的 C 端或 N 端接上七個 POG 都不會有聚集現象的產生,但接上十個 POG 後反而會加強聚集現象,因此我們知道 POG 的數目不宜過多才會有較好的抑制效果,最後將 POG 數目較少的三條胜肽: A(POG)6、 A(POG)7、(POG)7A 與 WT-A (16-22) 相混發現 (POG)7A 並無抑制的效果,而 A(POG)6、 A(POG)7 有抑制 A 聚集產生的效果,而這個效果並不完全來自於膠原蛋白的三股螺旋結構而可能與 PPⅡ 結構有關係。
Abstract
Alzheimer's disease ( AD ) is one of the most fatal neurodegenerative disease .The
major pathogenesis of Alzheimer's disease ( AD ) is neurofibrillary tangles and enile plaques , and the aggregation of the A 40 plays a crucial role in the pathogenesis of the senile plaques of Alzheimer's disease (AD) . Although the amyloid -protein has been studied extensively , the mechanisms of A aggregation in brain remain unclear . In this study , we investigate the influence of the collagen related peptides on A aggregation.
Here we chose the most important region of amyloid -protein responsible for aggregation , residues 16-22 (KLVFFAE) , as our study model . We incorporated the collagen sequence (POG)n into Aβ(16-22) and synthesized eight peptides:
WT-A(16-22) , A(16-22)-(POG)6 , A(16-22)-(POG)7, A(16-22)-(POG)10 , (POG)7-A(16-22) and (POG)10-A(16-22).Two collagen peptides (POG)7 and (POG)10 were synthesized as the control peptides for comparison.We used fluorescence spectroscopy, TEM , CD , FT-IR and DLS to study whether the collagen sequence can inhibit A aggregation .
CD measurements indicate that the Aβ(16-22) sequence at the N-terminus of (POG)n does not stabilize the triple-helical structure of collagen and such peptides have a weaker thermal stability than (POG)n .In contrast,when the Aβ(16-22) sequence is attached to the C-terminus of (POG)n, it can stablize the triple-helical structure of collagen.
From aggregation studies, we found that the amyloid aggregation did not occur when (POG)7 was incorporated into A(16-22) but the aggregation was enhanced when (POG)10 incorporated into A(16-22).The mixing experiments indicate that (POG)7A cannot inhibit the aggregation of WT-A(16-22) while A(POG)6 and A(POG)7 can.The inhibition effect may not be due to the triple-helical structure of collagen but the PPⅡ structure.
參考文獻 ( References )
1. Bella, J., Brodsky, B., and Berman, H. M. (1995) Hydration structure of a collagen peptide. Structure 3, 893-906.
2. Selkoe, D. J. (2004) Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases. Nat. Cell. Biol. 6, 1054-1061.
3. Stefani, M., and Dobson, C. (2003) Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution. J. Mol. Med. 81, 678-699.
4. Truant, R., Atwal, R. S., Desmond, C., Munsie, L., and Tran, T. (2008) Huntington’s disease: Revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J 275, 4252-4262.
5. Höppener, J. W. M., Ahrén, B., and Lips, C. J. M. (2000) Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 343, 411-419.
6. Irvine, G., Elagnaf, OM., Shankar, GM., Walsh, DM. (2008) Protein aggregation in the brain : The molecular basis for Alzheimer's and Parkinson's diseases. Mol. Med. 14, 451-464.
7. 溫時雨. (2011) 脯胺酸和羥脯胺酸組成之胜肽短鏈對貝它類澱粉蛋白Aβ(14-25)聚集的探討, 碩士學位論文, 清華大學化學研究所.
8. Fradinger, E. A., Monien, B. H., Urbanc, B., Lomakin, A., Tan, M., Li, H., Spring, S. M., Condron, M. M., Cruz, L., Xie, C.-W., Benedek, G. B., and Bitan, G. (2008) C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity. Proc. Natl. Acad. Sci. U.S.A. 105, 14175-14180.
9. Sciarretta, K. L., Boire, A., Gordon, D. J., and Meredith, S. C. (2006) Spatial separation of β-sheet domains of β-amyloid: Disruption of each β-sheet by N-methyl amino acids. Biochemistry 45, 9485-9495.
10. Poduslo, J. F., Curran, G. L., Kumar, A., Frangione, B., and Soto, C. (1999) β-sheet breaker peptide inhibitor of Alzheimer's amyloidogenesis with increased blood–brain barrier permeability and resistance to proteolytic degradation in plasma. Dev. Neurobiol. 39, 371-382.
11. Jellinger, K. A. (2006) Alzheimer 100 – highlights in the history of Alzheimer research. J. Neural. Transm. 113, 1603-1623.
12. 吳志偉. (2003) 腦區域性貝它糊蛋白結合蛋白之純化及其功能之研究, 碩士學位論文, 國立成功大學細胞生物與解剖學研究所
13. 洪成治. (2000) 阿茲海默氏症的基因檢測與遺傳諮詢, 應用心理研究 第七期, 143-155.
14. Murray, M. M., Bernstein, S. L., Nyugen, V., Condron, M. M., Teplow, D. B., and Bowers, M. T. (2009) Amyloid β protein: Aβ40 inhibits Aβ42 oligomerization. J. Am. Chem. Soc. 131, 6316-6317.
15. Camus, M.-S., Dos Santos, S., Chandravarkar, A., Mandal, B., Schmid, A. W., Tuchscherer, G., Mutter, M., and Lashuel, H. A. (2008) Switch-peptides: Design and characterization of controllable super-amyloid-forming host–guest peptides as tools for identifying anti-amyloid agents. ChemBioChem 9, 2104-2112.
16. Takahashi, T., and Mihara, H. (2008) Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Acc. Chem. Res. 41, 1309-1318.
17. Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., and Riek, R. (2005) 3D structure of Alzheimer's amyloid-β(1–42) fibrils. Proc. Natl. Acad. Sci. U.S.A. 102, 17342-17347.
18. Tjernberg, L. O., Callaway, D. J. E., Tjernberg, A., Hahne, S., Lilliehöök, C., Terenius, L., Thyberg, J., and Nordstedt, C. (1999) A molecular model of Alzheimer amyloid β-peptide fibril formation. J. Biol. Chem. 274, 12619-12625.
19. Tjernberg, L. O., Näslund, J., Lindqvist, F., Johansson, J., Karlström, A. R., Thyberg, J., Terenius, L., and Nordstedt, C. (1996) Arrest of β-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem. 271, 8545-8548.
20. Balbach, J. J., Ishii, Y., Antzutkin, O. N., Leapman, R. D., Rizzo, N. W., Dyda, F., Reed, J., and Tycko, R. (2000) Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39, 13748-13759.
21. 陳柏翰、劉中行. (2004年 8月) 科學發展期刊 380期, 4-35.
22. Brodsky, B., and Persikov, A. V. (2005) Molecular structure of the collagen triple helix, In Advances in Protein Chemistry. (David, A. D. P., and John, M. S., Eds.), pp 301-339, Academic Press, New Jersey.
23. Griffon, N., Baudbin, V., Dieryck, W., Dumoulin, A., Pagnier, J., Poyart, C., and Marden, M. C. (1998) Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates. Protein Sci. 7, 673-680.
24. 陳佳青. (2009) Cation-π 作用力對膠原蛋白穩定性及自組裝影響之探討,碩士學位論文, 清華大學化學研究所
25. Cowan, P. M., Stewart, M., North, A. C. T. (1955) The polypeptide chain configuration of collagen. Nature 176, 1062-1064.
26. Rich, A., and Crick, F. H. C. (1955) The structure of collagen. Nature 176, 915.
27. Rich, A., and Crick, F. H. C. (1961) The molecular structure of collagen. J. Mol. Biol. 3, 483-484.
28. 黃彥富、湯正明、徐善慧. (2003) 科學發展期刊 362, 44-47.
29. Sakakibara, S., Inouye, K., Shudo, K., Kishida, Y., Kobayashi, Y., and Prockop, D. J. (1973) Synthesis of (Pro-Hyp-Gly)n of defined molecular weights. Evidence for the stabilization of collagen triple helix by hydroxypyroline. Biochim. Biophys. Acta. 303, 198-202.
30. Fraser, R. D. B., MacRae, T. P. (1973) Conformation in fibrous proteins. Academic Press, NewYork.
31. Ramachandran, G. N. (1967) Structure of collagen at the molecular level. In: Treatise on Collagen. Academic Press 1, 103, London.
32. Bella, J., Eaton, M., Brodsky, B., and Berman, H. (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution. Science 266, 75-81.
33. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure. Protein Sci. 12, 1188-1194.
34. Brodsky, B., and Ramshaw, J. A. M. (1997) The collagen triple-helix structure. Matrix Biol. 15, 545-554.
35. Primalov, P. L. (1982) Stability of Proteins: Proteins which do not present a single cooperative system. Protein Chem. 35, 1-104.
36. Shah, N. K., Sharma, M., Kirkpatrick, A., Ramshaw, J. A. M., and Brodsky, B. (1997) Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope. Biochemistry 36, 5878-5883.
37. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., and Raines, R. T. (2001) Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 123, 777-778.
38. Burjanadze, T. V. (2000) New analysis of the phylogenetic change of collagen thermostability. Biopolymers 53, 523-528.
39. Vitagliano, L., Berisio, R., Mastrangelo, A., Mazzarella, L., and Zagari, A. (2001) Preferred proline puckerings in cis and trans peptide groups: Implications for collagen stability. Protein Sci. 10, 2627-2632.
40. Pedersen, S. L., Tofteng, A. P., Malik, L., and Jensen, K. J. (2012) Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 41, 1826-1844.
41. Merrifield, R. B. (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149-2154.
42. 張湘戎. (2003) 體抑素胜肽分子內雙硫鍵建構之研究, 碩士學位論文, 中原大學化學研究所.
43. Erdélyi, M., and Gogoll, A. (2002) Rapid microwave-assisted solid phase peptide synthesis. Synthesis 2002, 1592-1596.
44. Loffredo, C., Assunção, N. A., Gerhardt, J., and Miranda, M. T. M. (2009) Microwave-assisted solid-phase peptide synthesis at 60 °C: Alternative conditions with low enantiomerization. J. Pept. Sci. 15, 808-817.
45. Shieh, J.-M., Lai, Y.-F ., Lin, Y.-C., Fang, J.-Y (2005) Photoluminescence: Principles, structure,and applications. N. Engl. J. Med. 26, 28-39.
46. Skoog, D. A., Holler, F.J., Nieman, T.A. (1998) Principle of instrumental analysis, Saunders College Press, Belmont.
47. Berova, N., Nakanishi, K., and Woody, R (2000) Circular dichroism : Principles and applications, Wiley, Hoboken.
48. Whitmore, L., and Wallace, B. A. (2008) Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 89, 392-400.
49. Pelton, J. T., and McLean, L. R. (2000) Spectroscopic methods for analysis of protein secondary sructure. Anal. Biochem. 277, 167-176.
50. Berne, B. J., Pecora, R. (1976) Dynamic light scattering: with applications to chemistry,biology, and physics" Dover Publications, Mineola.
51. 鄭統元. (2009) 立體電子效應對雞絨毛蛋白 (Villin headpiece subdomain, HP 36) 結構影響之探討, 碩士學位論文, 清華大學化學研究所.
52. 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠. (2004) 材料電子顯微鏡學.
53. Ackerman, M. S., Bhate, M., Shenoy, N., Beck, K., Ramshaw, J. A. M., and Brodsky, B. (1999) Sequence dependence of the folding of collagen-like peptides: Single amino acids affect the rate of triple-helix nucleation. J. Biol. Chem. 274, 7668-7673.
54. Leonard, D. W., and Meek, K. M. (1997) Refractive indices of the collagen fibrils and extrafibrillar material of the corneal stroma. Biophys. J. 72, 1382-1387.
55. Anand, U., and Mukherjee, M. (2013) Exploring the self-assembly of a short aromatic Aβ(16–24) peptide. Langmuir 29, 2713-2721.
56. Tao, K., Wang, J., Zhou, P., Wang, C., Xu, H., Zhao, X., and Lu, J. R. (2011) Self-assembly of short Aβ(16−22) peptides: Effect of terminal capping and the role of electrostatic interaction. Langmuir 27, 2723-2730.
57. Yuan, C., and Gao, Z. (2013) Aβ interacts with both the iron center and the porphyrin ring of heme: Mechanism of heme’s action on Aβ aggregation and disaggregation. Chem. Res. Toxicol. 26, 262-269.
58. Brookhaven Instruction Manual for 90 plus.
59. Chen, Y.-S., Chen, C.-C., and Horng, J.-C. (2011) Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide. Biopolymers (Pept. Sci.) 96, 60-68.
60. He, C., Han, Y., Zhu, L., Deng, M., and Wang, Y. (2013) Modulation of Aβ(1–40) peptide fibrillar architectures by Aβ-based peptide amphiphiles, J. Phys. Chem. B. 117, 10475-10483.
61. Ni, C.-L., Shi, H.-P., Yu, H.-M., Chang, Y.-C., and Chen, Y.-R. (2011) Folding stability of amyloid-β 40 monomer is an important determinant of the nucleation kinetics in fibrillization. FASEB J 25, 1390-1401.
62. Linse, S., Cabaleiro-Lago, C., Xue, W.-F., Lynch, I., Lindman, S., Thulin, E., Radford, S. E., and Dawson, K. A. (2007) Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 104, 8691-8696.
63. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996) On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. U.S.A. 93,1125-1129.
64. Bohrmann, B., Tjernberg, L., Kuner, P., Poli, S., Levet-Trafit, B., Näslund, J., Richards, G., Huber, W., Döbeli, H., and Nordstedt, C. (1999) Endogenous proteins controlling amyloid β-peptide polymerization: Possible implications for β-amyloid formation in the central nervous system and in peripheral tissues. J. Biol. Chem. 274, 15990-15995.