研究生: |
何元宏 Ho, Yuan Hong |
---|---|
論文名稱: |
探討帶有熱源之圓棒在去離子水和海水中的淬冷 The quenching of cylinders with heating power in deionized water and sea water |
指導教授: |
潘欽
Pan, Chin 蘇育全 Su, Yu Chuan |
口試委員: |
陳紹文
Chen, Shao Wen 王琅琛 Wang, Lang Chen |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 淬冷 、膜沸騰 、萊登佛洛斯特溫度 、衰變熱 、離子態溶液 |
外文關鍵詞: | Quenching, Film boiling, Leidenfrost temperature, Decay heat, dissolved salt |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當一高溫熱體與低溫冷體接觸時,膜沸騰現象極可能被誘發。此種沸騰現象會抑制熱傳效果而阻礙冷卻的過程。在設計緊急爐心冷卻系統時,膜沸騰所造成的影響值得納入考慮,特別是當核電廠發生冷卻水流失事故時,爐心溫度極可能超過最低膜沸騰溫度而引發膜沸騰。再者,緊急事故發生後,雖然爐心立刻停機,但由於運轉時所產生的不穩定產物,仍會持續地衰變並釋出所謂的衰變熱。除此之外,冷卻水再淹沒的過程中,冷卻水的次冷度可能劇烈的改變。因此,了解衰變熱及次冷度對於淬冷過程的影響,即成為一重要且有趣的課題。由於核電廠大多建造於鄰近海岸的地方,因此海水成為一豐富的冷卻水來源。正因為如此,海水的淬冷行為也值得探討,以了解其在緊要時,對於核能安全可以扮演的角色。
本研究展示了無加熱與加熱的垂直黃銅圓棒,於不同次冷度之去離子水及海水中的淬冷。圓棒直徑與長度分別為24mm及112mm。六個K-type的熱電偶按照不同軸向深度擺放在距離表面2mm的位置。在經過每一次的淬冷實驗後,圓棒都會藉由相同的拋光處理程序使表面性質大約維持一致。首先,圓棒先在高溫加熱爐中預熱至約550°C,接續啟動圓棒內嵌的彈筒式加熱棒,當熱電偶1號達600°C 時,啟動氣壓缸將圓棒快速沒入淬冷池中。同一時間,啟動溫度數據擷取系統與高速攝影機,同步地記錄溫度的變化與淬冷圖譜的改變。淬冷池為一長195mm,寬195mm,高150mm的鋁框水缸。實驗進行前在其中注入去離子水或是海水,並藉由四個角落的T-type熱電偶監控池水溫度。實驗結果指出,在相同的池水溫度下,特別是在高池水溫度,例如池水溫度為95°C,去離子水實驗中,圓棒加熱時的膜沸騰時間為圓棒無加熱時的3.5倍。此外,隨著池水溫度的增加,膜沸騰時間也會增長。淬冷峰移動的速度除了隨著池水溫度增加而下降,圓棒有加熱時的淬冷峰移動速度也比圓棒無加熱時慢。萊登佛洛斯特溫度隨著池水溫度增加而下降,然而,熱源似乎對於萊登佛洛斯特溫度沒有顯著的影響。本研究結果指出,海水擁有相較於去離子水更加優異的熱移除能力,臨界熱通率約是去離子水的1.5倍。值得注意的是,不同於傳統的認知,高溫圓棒與淬冷液接觸後,並非立即形成蒸氣膜,而是藉由高溫核沸騰所產生的氣泡彼此間合併所致。
Film boiling is usually induced while a very hot object contacts with a coolant. Such phenomena will deteriorate the heat transfer and degrade the cooling process. Film boiling is of significant concern for the design of an emergency core cooling system after a hypothetical loss of coolant accident happens in a nuclear power plant. Furthermore, after a nuclear power plant is shut down, the fuel rods will continue to release the heat due to decay of fission products. Moreover, the subcooling of coolant might be changed dramatically during the reflood process. Therefore, it is of significant importance and interest to understand the effect of decay heat and subcooling of coolant on the quenching process of a hot object. Besides, because the nuclear power plants are usually located in the place near the coast, the sea water is considered as an abundant source of coolant. Thus, it is also important to study the quenching behavior of sea water.
This study demonstrates the quenching of a vertical brass cylinder without and with heating power in deionized water or sea water with different subcoolings. The diameter and length of the cylinder is 24 mm and 112 mm, respectively. Six K-Type thermocouples are embedded 2mm below the cylinder surface at different axial locations. The cylinder is welled polished with the same process after every single test to maintain the surface condition approximately the same. The cylinder is first heated up to an initial temperature of about 550 °C in a radiant furnace, then the heater inside the cylinder is turned on and subsequently immersed into the quench pool by a pneumatic cylinder when the thermocouple (based on TC1, the lowest one ) reaches 600°C. The dimension of quench pool is 195 mm x 195 mm x 150 mm (depth), which is partially filled with deionized water or sea water. The temperatures of the quench pool are measured with T-Type thermocouples at four corner. The quenching behavior is visualized by a high-speed video camera simultaneously with the temperature measurements. The experimental results reveal that, with heating power of 105W, corresponding to the mean flux of 13.5kW/m2, which is to simulate the heat flux due to decay heat at about 1hour after reactor shut down, the duration of film boiling becomes much larger than the case without heating power under the same subcooling condition, especially for the low subcooling condition. For instance, the duration of film boiling in the case with heating power is 3.5 times longer than that in the case without heating power in deionized water with subcooling of 5˚C. Besides, the duration of film boiling increases with decreasing subcooling. The heating power and decreasing subcooling slow down the quench speed. The Leidenfrost temperature decreases significantly with decreasing subcooling. However, the heating power has no significant effect on the Leidenfrost temperature. This study also reveals that the sea water has better cooling capability than that of deionized water. The critical heat flux of sea water is 1.5 times larger than that of deionized water. Significantly, the formation of vapor film around the cylinder was not immediate as traditionally thought, but formed through the bubble coalescence of nucleate boiling at high temperature.
[1] 王茹涵,「後石油時代—— 21世紀的能源新思維」,科學發展,第423期,第71頁,2008。
[2] 蔡富豐,「日本311 福島核災事件週年省思與感言」,台電核能月刊,第351期,第16-42頁,2012。
[3] S.H. Hsu, Y.H. Ho, M.X. Ho, J.C. Wang, C. Pan, On the Formation of Vapor Film during Quenching in De-ionized Water and Elimination of Film Boiling during Quenching in Natural Sea Water, Int. J. Heat Mass Transf., 86 (2015) 65-71
[4] 台灣電力公司,http://www.taipower.com.tw/content/new_info/new_info-b53.aspx?LinkID=10
[5] K.S. Liang, S.C. Chiang, Y.F. Hsu, H.J. Young, B.S. Pei, L.C. Wang, The ultimate emergency measures to secure a NPP under an accidental condition with no designed power or water supply, Nucl. Eng. Des. 253 (2012) 259–268.
[6] C.T. Chen, Chemical oceanography. (National Translation and Compilation Center, Taipei, 1994), 111, (in Chinese)
[7] S. J. Han, H. G. Lim, J. E. Yang, An estimation of an operator’s action time by using the MARS code in a small break LOCA without a HPSI for a PWR, Nucl. Eng. Des., 237 (2007) .749-760。
[8] B. Mavko, A. Stritar, A. Prosek, Application of code scaling, applicability and uncertainty methodology to large break LOCA analysis of two loop PWR, Nucl. Eng. Des., 143 (1993) .95-109。
[9] W. J. Green, K. R. Lawther, A study of the sensitivity of LOCA heat transfer analysis for a water-cooled reactor system , Nucl. Eng. Des., 47 (1978) 87-99。
[10] J. Stuckert, M. Grose, C. Rossger, M. Klimenkov, M. Steinbruck, M. Walter, QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0, Nucl. Eng. Des., 255 (2013) 185-201。
[11] A.D. Vasilieva, J. Stuckertb, Application of thermal hydraulic and severe accident code SOCRAT/V3 to bottom water reflood experiment QUENCH-LOCA-0, Nucl. Eng. Des., 261 (2013) 352-361。
[12] I. Sher, R. Harari, R. Reshef, E. Sher, Film boiling collapse in solid spheres immersed in a sub-cooled liquid, Appl. Therm. Eng., 36 (2012) 219-226。
[13] A. Bolukbasi, D. Ciloglu, Investigation of heat transfer by means of pool film boiling on vertical cylinders in gravity, Heat and Mass Transf., 44 (2007) 141-148.
[14] I. U. Vakarelski1, N. A. Patankar, J. O. Marston, D. Y. C. Chan, S. T. Thoroddsen, Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces , Nature, 489 (2012) 274-277。
[15] C.Y. Lee, T.H. Chun, W.K. In, Effect of change in surface condition induced by oxidation on transient pool boiling heat transfer of vertical stainless steel and copper rodlets, Int. J. Heat Mass Transf., 79 (2014) 397-407
[16] C. Kruse, T. Anderson, C. Wilson, C. Zuhlke, D. Alexander, G. Gogos, S. Ndao, Extraordinary Shifts of the Leidenfrost Temperature from Multiscale Micro/Nanostructured Surfaces, Langmuir 29 (2013) 9798–9806
[17] H. Kim, B. Truong, J. Buongiorno, L. W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett., 98 (2011) 083121。
[18] C. K. Huang, V. P. Carey, The effects of dissolved salt on the Leidenfrost transition, Int. J. Heat Mass Transf., 50 (2007) 269-282。
[19] H. Lotfi, M.B. Shafii, Boiling heat transfer on a high temperature silver sphere in nanofluid, Int. J. Therm. Sci., 48 (2009) 2215-2220。
[20] H. Kim, G. DeWitt, T. McKrell, J. Buongiorno , L. W. Hu, On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles, Int. J. Multiphase Flow, 35 (2009) 427-438。
[21] S. Chun, I.C. Bang, Y. Choo, C. Song, Heat transfer characteristics of Si and SiC nanofluids during a rapid quenching and nanoparticles deposition effects, Int. J. Heat Mass Transf., 54 (2011) 1217–1223。
[22] A. Mourgues, V. Hourtane, T. Muller, M. Caron-Charles, Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without ZnO nanofluid, Int. J. Heat Mass Transf., 57 (2013) 595-607。
[23] M Jamialahmadi, H Müller-Steinhagen, Pool boiling heat transfer to electrolyte solutions, Chem. Eng. Process. 28 (1990) 79-88
[24] M. Jamialahmadi, A. Helalizadeh, H. Müller-Steinhagen, Pool boiling heat transfer to electrolyte solutions, Int. J. Heat Mass Transf., 47 (2004) 729-742
[25] S. W. Lee, S. M. Kim, S. D. Park, I. C. Bang, “Study on the cooling performance of sea salt solution during reflood heat transfer in a long vertical tube”, Int. J. Heat Mass Transf., 60 (2013) 105-113。
[26] V. S. J. Craig , B. W. Ninham , R. M. Pashley, The Effect of Electrolytes on Bubble Coalescence in Water, J. Phys. Chem., 97 (1993) 10192–10197
[27] S. J. Miklavcic, Deformation of fluid interfaces under double-layer forces stabilizes bubble dispersions, Phys. Rev. E, 54 (1996) 6551-6556
[28] K.H.M. Abdalrahman, Sabariman , E. Specht, Influence of salt mixture on the heat transfer during spray cooling of hot metals, Int. J. Heat Mass Transfer 78 (2014) 76-83
[29] M. Firouzi, T. Howes, A.V. Nguyen, A quantitative review of the transition salt concentration for inhibiting bubble coalescence, Adv. Colloid Interface Sci. (2014), http://dx.doi.org/10.1016/j.cis.2014.07.005
[30] V.K. Dhir and G.P. Purohit, Subcooled film-boiling heat transfer from spheres, Nucl. Eng. Des., 47 (1978) 49-66
[31] F.P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, Principles of Heat and Mass Transfer (John Wiley & Sons, Singapore, ed.6) (2013) 983
[32] Omega, http://www.omega.com/techref/colorcodes.html
[33] J. R. Lamarsh, Introduction to Nuclear Engineering, 2nd Edition, Addison-Wesley Publishing Company, Inc., New York (1983)
[34] B.J. Kirby, E.F. Hasselbrink, Zeta potential of microfluidic substrates: 1. Theory, experimental techniques and effects on separations, Electrophoresis 25 (2004) 187–202.
[35] R. Vendittli, X. Xuan, D. Li, Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels, Microfluid. Nanofluid. 2 (2006) 493–499
[36] 潘欽,「沸騰熱傳與雙相流」,國立編譯館,第72頁,2001。
[37] H. Kim, J. Buongiorno , L. W. Hu, T. McKrell, Nanoparticle deposition effects on the minimum heat flux point and quench front speed during quenching in water-based alumina nanofluids, Int. J. Heat Mass Transf., 53 (2010) 1542-1553