研究生: |
游凱傑 Yu, Kai-Chieh |
---|---|
論文名稱: |
高效率大面積有機太陽電池的先進製程開發與分析 Advanced Process Development and Analysis for High-Efficiency Large-Area Organic Solar Cells |
指導教授: |
洪勝富
Horng, Sheng-Fu |
口試委員: |
孟心飛
冉曉雯 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 刮刀塗佈 、有機太陽能電池 、大面積 |
外文關鍵詞: | blade coating, organic solar cells, large area |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機太陽電池具有成本低、容易製程、可撓曲及可大面積化之優勢,在太陽電池領域深受重視。大面積製程為未來量產化必定要走的方向,所以本論文以刮刀塗佈取代旋轉塗佈製做大面積有機太陽電池,不僅能提升溶液使用率以及具有與roll-to-roll製程結合之潛力。
本論文使用Glass/ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al做為元件結構,其中電洞傳輸層PEDOT:PSS及主動層P3HT:PCBM由刮刀塗佈製作。在本文中使用雕刻刀定義主動區面積來克服THF擴散進主動區問題。一開始討論電洞傳輸層PEDOT成膜情形,我們以兩次刮塗方式及不同刮速來改善PEDOT層膜厚不均問題。接著探討不同的主動層濃度及刮塗速度對膜厚與元件結果之影響,我們發現主動層厚度會隨著刮速提升而增加,其中刮塗速度為40mm/s 能達到理想的主動層厚度之結果,但伴隨著前後端膜厚差異較大之問題。因為在單位溶液中有較多的溶質,所以將主動層濃度提高能有效的提升膜厚及元件效率,在最佳化的退火條件下以濃度29mg/ml製作單一大面積 (6.3cm2)元件之轉換效率達到3.27 % ;串聯式大面積 (31.5cm2)元件之轉換效率達到2.9 % 。本論文證實了大面積有機太陽電池能夠有良好的轉換效率,未來可以嘗試往軟性基板發展。
Organic solar cells have recently attracted much attention due to their potential for low-cost, flexible, large active area solar energy harvesting devices and simple fabrication process. We used blade-coating technique to fabricate large-area organic solar cells. Blade-coating technique not only reducing the usage of material
but also has the potential toward roll-to-roll process.
In this study, we used blade-coating process to deposit the hole transport layer and active layer. The active layer was a bulk heterojunction (BHJ) consisting of P3HT and PCBM. We overcame the THF solution diffusion into active region by using a graver to define the active region. Then the non-uniformity of hole transport layer was improved by two times coating in different blade speed. However, the thickness of active layer will affect the device performance. We tried many different concentration of P3HT:PCBM solution and different blade speed to find the optimal thickness of active area. And we found that high blade speed leads to increased layer thickness and larger non-uniformity. The best power conversion efficiency of devices using 29mg/ml P3HT:PCBM solution with optimal annealing condition can
reach to 3.27% (single cell:6.3cm2) and 2.9% (five cells in series:31.5cm2).
[1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25,
676 (1954).
[2]. J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “ Novel 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar
cells,” Appl.Phys. Lett. 73, 1991 (1998).
[3]. O. Schultz,S. W. Glunz, G. P. Willeke, “ Multicrystalline silicon solar cells exceeding 20% efficiency,” Prog. Photovolt. : Res. Appl.12, 553( 2004).
[4]. S. Benagli, D. Borrello, E. Vallat-Sauvain, J .Meier, U. Kroll, J .Hötzel, J .Spitznagel, J .Steinhauser, L .Castens, Y. Djeridane “ High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor,” 24th European Photovoltaic Solar Energy Conference, Hamburg,
Sept. (2009).
[5]. News-“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices”(2012).
[6]. K. M. Coakley,Wudl and M. D. McGehee,“Conjugated polymer photovoltaic
cells,” Chem. Mater. 16, 4533 (2004).
[7]. Harald Hoppe, and Niyazi Serdar Sariciftci, “Organic solar cell: An review,”
J. Mater. Res. , Vol. 19, No. 7, (2004).
[8]. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, "High-efficiency
solution processible polymer photovoltaic cells by self-organization of polymer
blends", Nat. Mater., 4, 864 (2005)
[9]. K. Kim, J. Liu, M. A. G. Namboothiry, D. L. Carroll, “Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer
photovoltaics” Appl. Phys. Lett., 90, 163511 (2007)
[10]. S. R. Tseng, H. F. Meng, K. C. Lee, and S. F. Horng. Appl. Phys. Lett. 93,
153308 (2008).
[11]. S. S. Kim, S. I. Na, J. Jo, G. Tae, and D. Y. Kim. ,“Efficient polymer solar
cells fabricated by simple brush painting,”Adv. Mater. 19, 4410 (2007)
[12]. F.C.Krebs, T.Tromholt and M. Jørgensen,“Upscaling of polymer solar cell
fabrication using full roll-to-roll processing”, Nanoscale, 2, 873 (2010).
[13]. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R. H. Friend, A. B. Holmes,“The photovoltaic response in poly(ppheny1ene vinylene) thin-film devices”.J.
Phys. :Condens. Matter. 6, 1379 (1994).
[14]. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M.T. Rispens, L. Sanchez, J. C. Hummelen, and T Fromherz, “ The influence of materials work function on the open circuit voltage of plastic solar cells,” Thin Solid Film, 403-404,368 (2002).
[15]. H. Kim, S-H. Jin, H. Suh, and K. Lee, “Origin of the open circuit voltage in
conjugated polymer-fullerene photovoltaic cells,” In Organic Photovoltaics IV, edited by Z.H. Kafafi, and P.A. Lane, Proceedings of the SPIE, Vol. 5215,
p. 111(SPIE, Bellingham, WA, 2004).
[16]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized,
high-mobility conjugated polymers,” Nature, 401, 685 (1999).
[17]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene
Derivatives,” J.Org. Chem. 60, 532 (1995)
[18]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678
(2003)
[19]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M.
W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig,
and D. M. de Leeuw, “Two-dimensional charge transport in self-organized,
high-mobility conjugated polymers,” Nature, 401, 685 (1999)
[20]. F. Machui,, S. Langner , X. Zhu, S. Abbott , C.J. Brabec ,“Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance,” Sol. Energy Mater. Sol.Cells,100
, 138 (2012)