研究生: |
蔡君正 Tsai, Chun-Cheng |
---|---|
論文名稱: |
Fenton 增強和太陽光驅動微生物燃料電池系統 Fenton-enhanced and solar -driving microbial fuel cell system |
指導教授: |
周立人
Chou, Li-Jen |
口試委員: |
黃肇瑞
周立人 Chou, Li-Jen 許益源 張晃猷 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 微生物燃料電池 、光電陰極 、二氧化鈦奈米線 |
外文關鍵詞: | microbial fuel cell, photocathode, fenton reaction, TiO2 nanowire |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用包含鐵參雜二氧化鈦奈米線和鉑/碳混合nafion的新穎觸媒,綠膿桿菌當作陽極菌源,來製作零偏壓太陽光驅動和Fenton增強效果的微生物燃料電池系統。經由Fenton反應生成的氫氧自由基(•OH)可以有效的增進微生物燃料電池產電。本研究利用鐵參雜二氧化鈦奈米線當作微生物燃料電池的陰極,Fenton反應的發生,使得微生物燃料電池的開路電壓由602mV增進到733mV,功率密度也從1952μW/m2增進到2986μW/m2。
接著,我們成功的讓太陽光驅動的微生物燃料電池在白光照明下產生的電流由5.4到6.1μA(外接400歐姆電阻),在白光的照明下最大功率密度可以由2986增強到11140μW/m2,開路電壓可以由733增強到742mV。從以上的研究成果我們提供了一個利用鐵參雜的金紅石二氧化鈦奈米線結構或者其他可行的半導體材料,來減少貴金屬觸媒的使用進而減少燃料電池開發的成本,並且開啟了對於微生物與奈米微機電混合的元件獨特的應用,在能源轉換、環境保護以及生物醫學上研究的契機。
This study reports on zero bias, solar-driving and Fenton-enhanced microbial fuel cells(MFCs) that contain Fe-doped rutile TiO2 nanowires and Pt/C/nafion as a novel cathode catalyst. Pseudomonas aeruginosa was colonized as the anode. The hydroxyl radicals (•OH) produced via Fenton’s reaction promoted the generation of electricity in MFCs. The MFC containing Fe-doped TiO2 nanowires as a cathode stimulate the fenton reaction ; as a result, the open circuit potential can be enhanced from 602 to 733 mV and the maximum power density increased from 1952 to 2986 μW/m2.
In addition, a substantial current enhancement from 5.4 to 6.1μA in a solar-driving MFC device that is based on a photocathode (with a projected area of 1.747 cm2) at zero bias is demonstrated under illumination by white visible light 900 lux when the system is connected to a resistance of 400Ω. The maximum power density under illumination by white light was remarkably enhanced from 2986 to 11140μW/m2 and the open circuit potential was enhanced from 733 to 741 mV.
In conclusion, the results of this study show that rutile Fe-doped TiO2 nanowires, and other expected semiconductor materials may serve as cost-effective alternative catalysts to reduce the use of noble metals in MFC applications and create new opportunities for microbial/nanoelectronic hybrid devices in energy conversion, environmental protection, and biomedical application.
Chapter 1
[1.1] Y. H. Yang, X. Y. Chen, Y. Feng, and G. W. Yang, “Physical Mechanism of Blue-Shift of UV Luminescence of a Single Pencil-Like ZnO Nanowire”, Nano Lett., 7,(2007), pp.3879-3883.
[1.2] J. M. Krans, J. M. van Rultenbeek, V. V. Fisun, I.K. Yanson, and L. J. de Jongh, ”The signature of conductance quantization in metallic point contacts”, Nature, 375, (1995), pp.767-769.
[1.3] D. K. Sarkar, D. Brassard, and M. A. El Khakani, ”Single-electron tunneling at room temperature in TixSi1−xO2 nanocomposite thin films”, Appl. Phys. Lett., 87, (2005), pp.253108-253110.
[1.4] G. Markovich, C. P. Cllier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, ”Architectonic Quantum Dot Solids”, Acc. Chem. Res., 32, (1999), pp.415-423.
[1.5] M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, ”Resonant tunneling of electrons via 20 nm scale InAs Quantum dot and magnetotunneling spectroscopy of its electronic states”, Appl. Phys. Lett., 70, (1997), pp.6-8.
[1.6] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ”Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, 286,(1999), pp.1550-1552.
[1.7] M. T. Bjo¨rk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, ”Nanowire resonant tunneling diodes”, Appl. Phys. Lett., 81,(2002), pp.4458-4460.
[1.8] V. B. Johannes, C. Giovanni and K. Klaus, “Review Article Engineering atomic and molecular nanostructures at surfaces”,Nature,437, (2005),pp.671-679
[1.9] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration”, Science, 293, (2001), pp.2044-2049.
[1.10] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, ”A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology”, Science, 80, (1998), pp.1716-1721.
[1.11] A. L. Linsebigler, G. Lu, J. T. Yates, , “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”,Jr. Chem. ReV. 95,( 1995),735.
[1.12] W. Choi, A. Termin, M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics” , J. Phys. Chem. 98, (1994) , pp. 13669-13679.
[1.13] Z. Luo, Q. Gao, “Decrease in the photoactivity of TiO2 pigment on doping with transition metals ” , J. Photochem. Photobiol., A 63, (1992) , pp. 367-375.
[1.14] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cai, “ Preparation, characterization and photoelectrochemical behaviors of Fe(III)-doped TiO2 nanoparticles”, J. Mater. Sci. , 34 ,(1994), pp. 3721- 3729.
[1.15] M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, , H. Yamashita, K. Ikeue, B. Morin, A. Davidson, M. Che, “The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method”. Res. Chem. Intermed. , 27, (2001),pp.459-467
[1.16] M. Anpo, “Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method”. Pure Appl. Chem., 72, (2000), pp.1787-1792
[1.17] M. Anpo,“Utilization of TiO2 photocatalysts in green chemistry”. Pure Appl. Chem., 72,(2000),pp.1265-1270
[1.18] M. Anpo, M.Takeuchi, “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation”, J. Catal., 216,(2003), pp.505-516
[1.19] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations”. J. Phys. Chem. Solids, 63,(2002),pp. 1909-1920
[1.20] M. C. Potter,”Electrical effects accompanying the decomposition of organic compounds”. Royal Society B, 84,(1911), p260-276.
[1.21] R. M. Allen,H. P. Bennetto, “Microbial fuel cells—Electricity production from carbohydrates.” Appl. Biochem. Biotechnol., 39/40,( 1993), pp. 27–40.
[1.22] B. H. Kim, D. H. Park, P. K. Shin, I. S. Chang, and H. J. Kim, , ”Mediator-less biofuel cell”, U.S. Patent 5976719
[1.23] K. Rabaey and W. Verstraete,”Microbial fuel cells: novel biotechnology for energy generation”, Trends in Biotechnology,23,(2005),pp. 291-298.
[1.24] J. F. Hidelberg et al, “Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis”, Nat. Biotechnol. ,20,(2002),pp. 1118-1123.
[1.25] Methe et al, “Genome of Geobacter sulfurreducens: Metal reduction in subsurface environment ” , Science , 302, (2003), pp. 1967-1969.
[1.26] K. Rabaey , N. Boon , M. Hofte and W. Verstraete, “Microbial phenazine production enhances electron transfer in biofuel cells.”, Environ. Sci. Technol., 39,(2005),pp. 3401-3408.
[1.27] K. Rabaey , N. Boon , S.D.Siciliano and W. Verstraete, “Biofuel cells select for microbial consortia that self-mediate electron transfer.” , Appl. Environ. Microbiol. , 70,(2004),pp. 5373- 5382
[1.28] C. Reguera , K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen and D. R. Lovley, “Extracellular electron transfer via microbial nanowires.” ,Nature, 435,(2005),pp.1098-1101
[1.29] Y. A. Gorby and T. J. Beveridge, “Composition, reactivity, and regulation of extracellular metal-reducing structure (nanowires) produced by dissimilatory metal reducing bacteria.” Warrenton, VA.(2005)
[1.30] A. S. Beliaev and D. A. Saffarini, “ Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction.” J. Bacteriol. ,180,(1998),pp. 6292-6297
[1.31] J. M. Myers and C. R. Myers, “Role of the tetraheme cytochrome cyma in anaerobic electron transport in cells of Shewanella petrefaciens MR-1 with normal levels of menaquinone.” J. Bacteriol. , 182, (2000) , pp.67-75
[1.32] J. M. Myers and C. R. Myers, “Role for outer membrane cytochromes OmcA and OmcB of Shewanella putre faciens MR-1 in reduction of manganese dioxide.” Appl. Environ. Microbiol. , 67, (2001) , pp.260-269
[1.33] P. S. Dobbin, A. K. Powell, A. G. McEwan and D. J. Richardson, “The influence of chelating-agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens.” Biometals 8,(1995), pp.163-173
[1.34] S. K. Lower, M. F. Hochella and T. J. Beveridge, “Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and a-FeooH.” Science, 292, (2001) ,pp.1360-1363
[1.35] S. K. Chaudhuri, D. R. Lovley, “Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.” Nat.
Biotechnol. , 21, (2003), pp. 1229-1232
[1.36] D. H. Park, J. G. Zeikus, “Improved fuel cell and electrode designs for producing electricity from microbial degradation.” , Biotechnol. Bioeng. , 81, (2003) ,pp. 348–355.
[1.37] D. A. Lowy, L. M. Tender, J. G. Zeikus, D. H. Park, D. R. Lovley, “Harvesting Energy from the Marine Sediment-Water Interface II-Kinetic Activity of Anode Materials.” , Biosens. Bioelectron. , 21, (2006) , pp. 2058-2063.
[1.38] M. Rosenbaum, F. Zhao, U. Schroder, F. Scholz, “Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell.” , Angew. Chem., Int. Ed. ,45, (2006) ,pp. 6658-6661.
[1.39] K. Rabaey, W. Verstraete, “Microbial Fuel Cells: Novel Biotechnology for Energy Generation.” , Trends Biotechnol. , 23, (2005) , pp. 291-298.
[1.40] G. C. Gil, I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, H. J. Kim, “Operational parameters affecting the performance of a mediatorless microbial fuel cell.” , Biosens. Bioelectron. , 18, (2003) ,pp. 327-334.
[1.41] F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, I. Herrmann, “Challenges and constraints of using oxygen cathodes in microbial fuel cells.” , Environ. Sci. Technol. , 40, (2006) , pp. 5193-5199.
[1.42] C. E. Reimers, L. M. Tender, S. Fertig, W. Wang, “Harvesting energy from the marine sediment-water interface.” , Environ. Sci. Technol. , 35, (2001) , pp. 192-195.
[1.43] H. Liu, R. Ramnarayanan, B. E. Logan, “Production of electricity during wastewater treatment using a single chamber microbial fuel cell.” , Environ. Sci. Technol. , 38 ,(2004), pp. 2281-2285.
[1.44] D. Sell, P. Krämer, G. Kreysa, “Use of an oxygen gas diffusion cathode and a three-dimensional packed bed anode in a bioelectrochemical fuel cell.” , Appl. Microbiol. Biotechnol., 31, (1989) , pp. 211-213.
[1.45] B. Wang , “Recent development of non-platinum catalysts for oxygen reduction reaction.”,J. Power Sources, 252, (2005) ,pp.1-15.
[1.46] D. H. Park, J. G. Zeikus, “Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens.” , Appl. Microbiol. Biotechnol. , 59, (2002) ,pp. 58-61.
[1.47] D. H. Park, J. G. Zeikus, “Improved fuel cell and electrode designs for producing electricity from microbial degradation.” , Biotechnol. Bioeng. , 81, (2003) , pp. 348-355.
[1.48] A. ter Heijne, HVM. Hamelers, V. de Wilde, R. A. Rozendal, CJN. Buisman, “A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells.” , Environ. Sci. Technol. , 40, (2006) , pp. 5200-5205.
[1.49] S. Cheng, H. Liu, B. E. Logan, “Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells.” , Environ. Sci. Technol. , 40, (2006) , pp. 364-369.
[1.50] F. Zhao, F. Harnisch, U. Schroder, F. Scholz, P. Bogdanoff, I. Herrmann, “Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells.” , Electrochem. Commun. , 7, (2005) , pp. 1405-1410.
[1.51] L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, “Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts.” , Electrochim. Acta. , 48, (2003) , pp. 1015-1021.
[1.52] A. Rhoads, H. Beyenal, Z. Lewandowski, “Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.” , Environ. Sci. Technol. , 39, (2005) ,pp. 4666-4671.
[1.53] S. E. Oh, B. Min, B. E. Logan, “Cathode performance as a factor in electricity generation in microbial fuel cells.” , Environ. Sci. Technol. , 38, pp. 4900-4904.
[1.54] T. H. Pham, J. K. Jang, I. S. Chang, B. H. Kim, “Improvement of cathode reaction of a mediator-less microbial fuel cell.” , J .Microbiol. Biotechnol. , 14, (2004) , pp. 324-329.
[1.55] S. Freguia, K. Rabaey, Z. Yuan, J. Keller, “Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells.” , Electrochim. Acta , 53, (2007) , pp. 598-603.
[1.56] Ø. Hasvold, H. Henriksen, E. Melvr, G. Citi, B. Ø. Johansen, T. Kjønigsen, R. Galetti, “Sea-water battery for subsea control systems.” , J. Power Sources , 65 , (1997) , pp. 253-261.
[1.57] C. E. Reimers, P. Girguis, H. A. Stecher, L. M. Tender, N. Ryckelynck, P. Whaling, “Microbial fuel cell energy from an ocean cold seep.” , Geobiology , 4, (2006) , pp. 123-136.
[1.58] J. Larminie, A. Dicks, “Fuel Cell Systems Explained” , 2nd,(2003).
[1.59] J. O'M. Bockris, A.K.N.Reddy, and M. Gamboa-Aldeco, “Modern Electrochemistry 2A. Fundamentals of Electrodics.”,2nd, (2000).
[1.60] U. Schröder, J. Niessen, and F. Scholz, “A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude.”, Angew. Chem.-Int. Edit., 42,(2003),pp. 2880-2883.
[1.61] D. H. Park, J. G. Zeikus, “Electricity generation in microbial fuel cells using neutral red as an electronophore.” , Appl. Environ. Microbiol., 66,(2000), pp. 1292-1297.
[1.62] D. H. Park, J. G. Zeikus, “Improved fuel cell and electrode designs for producing electricity from microbial degradation.” , Biotechnol. Bioeng. , 81,(2003), pp. 348-355.
[1.63] F. Lucking, H. Koser, M. Jank, A. Ritter, “Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution.” , Water Res. ,32 ,(1998),pp. 2607–2614.
[1.64] K. Swaminathan, S. Sandhya, S. A. Caramlin, K. Pachhade, Y.V. Subrahmanyam, “Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system”, Chemosphere, 50 ,(2003), pp. 619-625.
Chapter 2
Chapter 3
[3.1] J. He, H. Lindstr□om, A. Hagfeldt, S. Lindquist, “Dye-Sensitized Nanostructured p-Type Nickel Oxide Film As a Photocathode for a Solar Cell.”, J. Phys. Chem. B, 103,(1999), pp. 8940-8943.
[3.2] J. Lin, J. C. Yu, D. Lo, S. K. Lam, “Photocatalytic activity of rutile Ti1-xSnxO2 solid solutions.”, J. Catal.,183,(1999), pp. 368-372.
[3.3] H. Rismani-Yazdi, S. M. Carver, A. D. Christy,O. H. Tuovinen, “Cathodic limitations in microbial fuel cells: An overview.” ,J. Power Sources, 180,(2008), pp. 683-694.
[3.4] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, “Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations”, J. Phys. Chem. Solids, 63,(2002),pp. 1909-1920.
[3.5] A. H. Lu, Y. Li, S. Jin, H. G. Ding,C. P. Zeng,X. Wang, C. Q. Wang, “Microbial Fuel Cell Equipped with a Photocatalytic Rutile-Coated Cathode” , Energy Fuels, 24, (2010), pp.1184-1190
Chapter 4