研究生: |
郭峻嘉 Chun-Cha Kuo |
---|---|
論文名稱: |
摻雜銻之二氧化錫一維奈米結構的合成與陰極發光性質研究 Synthesis and Cathodoluminescence Property of Sb doped SnO2 1-D Nanostructures |
指導教授: |
施漢章
Han C. Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 二氧化錫 、摻雜 、奈米線 、奈米結構 |
外文關鍵詞: | SnO2, doped, nanowires, nanostructures |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為合成摻雜銻之二氧化錫一維奈米結構並分析其陰極發光特性。實驗中利用熱蒸鍍法分別在氧化鋁基板上合成純二氧化錫奈米線及摻雜銻之二氧化錫奈米線作為相互對照。已合成的純二氧化錫一維奈米結構有:長鳥嘴狀二氧化錫奈米線、短鳥嘴狀二氧化錫奈米線;摻雜銻之二氧化錫奈米結構包含:摻雜銻之二氧化錫奈米線、摻雜銻之針狀鳥嘴二氧化錫奈米柱、摻雜銻之二氧化錫奈米帶。上述的結構先以場發射掃瞄式電子顯微鏡(FESEM)觀察形貌,再利用穿透式電子顯微鏡(TEM)和XRD分析結構及成長方向,最後使用XPS或EDS作成分的鑑定。
在陰極發光特性分析的部分,研究結果顯示摻雜銻之二氧化錫奈米結構的陰極發光光譜在480 nm附近皆有微弱的發光訊號,而純二氧化錫奈米結構則在480 nm及600nm左右有非常強的陰極發光訊號。此位在600 nm附近的峰值,我們相信是由成長過程所產生的氧空缺所提供。
In this work, pure SnO2 nanowires and Sb-doped SnO2 1-D nanostructures have been synthesized by thermal evaporation. Some of the nanostructures grown on Al2O3 substrates showed beak-like structures at tips. The pure SnO2 nanostructures were successfully synthesized and had appearance of long beak-like nanowires and short beak-like nanowires. We fabricated Sb-doped SnO2 nanowires, Sb-doped SnO2 with needle-like beak nanorods and Sb-doped SnO2 nanobelts with thermal evaporation by using pure tin (Sn) and antimony (Sb) powders under oxygen atmosphere. The morphology of nanostructures was analyzed by field emission scanning electron microscope (FESEM). The d-spacing and grown directions of nanowires were identified by high resolution transmission electron microscopy and selected-area electron diffraction analysis (HRTEM & SAD). The structures and components were characterized by means of X-ray diffraction, energy dispersive x-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
Furthermore, we have also studied about the Cathodoluminescence (CL) property of the pure SnO2 and the Sb-doped SnO2 1-D nanostructures. The CL spectra of Sb-doped SnO2 nanowires showed only one peak centered at 480 nm, while the CL spectra of the pure SnO2 nanowires showed two broad bands centered at 480 nm and 600 nm with very strong intensity. We believed the emission peak at 600 nm was contributed by oxygen vacancy which was generated with the growth of nanowires.
第七章參考文獻
[1]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 1991, Vol. 354, 56
[2] U.S. Chen, Y.L. Chueh, S.H. Lai, L.J. Chou, H.C. Shih, “Synthesis and characterization of self-catalyzed CuO nanorods on Cu/TaN/Si assembly using vacuum-arc Cu deposition and vapor-solid reaction”, J. Vac. Sci. Technol. B 2006, 24(1), 139
[3] S.H. Tsai, C.T. Shiu, S.H. Lai, H.C. Shih, “Tubes on tube—a novel form of aligned carbon nanotubes”, Carbon 2002, 40, 1597
[4] Jyh-Ming Wu, Han CShih1, and Wen-Ti Wu, “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation”, Nanotechnology, 2005, 16, 1–5
[5] S.I. Rembeza, E.S. Rembeza, T.V. Svistova, and O.I. Borsiakova, “Electrical resistivity and gas response mechanisms of nanocrystalline SnO2 films in a wide temperature range”, Phys. Stat. Sol. (a) 2000, 179, 147
[6] A.S. Ryzhikov, A.N. Shatokhin, F.N. Putilin, M.N. Rumyantseva, A.M. Gaskov, and M. Labeau, “Hydrogen sensitivity of SnO2 thin films doped with Pt by laser ablation”, Sensor Acutat. B-Chem. 2005, 107, 387
[7] G. Salviati, L. Lazzarini, M.Z. Zha, V. Grillo, and E. Carlino, “Cathodoluminescence spectroscopy of single SnO2 nanowires and nanobelts”, Phys. Stat. Sol. (a) 2005, 202, 2963
[8] J. Hu, Y. Bando, Q. Liu, and D. Golberg, “Laser-Ablation Growth and Optical Properties of Wide and Long Single-Crystal SnO2 Ribbons”, Adv. Funct. Mater. 2003, 13, No. 6, 493
[9] D. Calestani, L. Lazzarini, G. Salviati, and M. Zha, “Morphological, structural and optical study of quasi-1D SnO2 nanowires and nanobelts”, Cryst. Res. Technol. 2005, 40, No. 10-11, 937
[10] S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, and A.P. Baddorf, “Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device”, J. Appl. Phys. 2005, 98(4), 044503
[11] X.S. Peng, L.D. Zhang, G.W. Meng, Y.T. Tian, Y. Lin, B.Y. Geng, and S.H. Sun, “Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powders”, J. Appl. Phys. 2003, 93(3), 1760
[12] Y.J. Chen, Q.H. Li, Y.X. Liang, and T.H. Wang, “Field-emission from long SnO2 nanobelt arrays”, Appl. Phys. Lett. 2004, 85, 5682
[13] Y.J. Ma, F. Zhou, L. Lu, and Z. Zhang, “Low-temperature transport properties of individual SnO2 nanowires”, Solid State Commun. 2004, 130, 313
[14] J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, and S.S. Xie, “Growth of SnO2 nanowires with branched structures”, Solid State Commun. 2004, 130, 89
[15] S.H. Sun, G.W. Meng, Y.W. Wang, T. Gao, M.G. Zhang, Y.T. Tian, X.S. Peng, L.D. Zhang, “Large-scale synthesis of SnO2 nanobelts”, Appl. Phys. A 2003, 76, 287
[16] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z.L. Wang, “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties”, Small 2006, 2, No. 1, 116
[17] P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, “Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays”, Nano Lett. 2003, 3, No. 7, 925
[18] Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2”, Adv. Mater. 2004, 16, No.4, 353
[19] H. Kim and C. M. Gilmore, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices”, J. Appl. Phys. 1999, 86, No. 11, 6451
[20] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimentional nanostructures: Synthesis, Characterization, and Application”, Adv. Mater. 2003, 15, No. 5, 353
[21] R.S. Wagner, W.C. Ellis , “Vapor-Solid-Growth Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 1964, 4, 89
[22] Timothy J. Trentler, Kathleen M. Hickman, Subhash C. Goel, Ann M. Viano, Patrick C. Gibbons, William E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science 1995, 270, No. 5243, 1791
[23] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Novel nanostructure of functional oxides synthesized by thermal evaporation”, Adv. Funct. Mater. 2003, 13, No. 1, 9
[24] Congkang Xu, Guoding Xu, Yingkai Liu, Xiaolin Zhao, Guanghou Wang, “Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor”, Scripta mater. 2002, 46, 89–794
[25] H.W. Kim, N.H. Kim, J.H. Myung, and S.H. Shim, “Characteristics of SnO2 fishbone-like nanostructures prepared by the thermal evaporation”, Phys. Stat. Sol. (a) 2005, 202, No. 9, 1758
[26] Aicheng Chen, Xinsheng Peng, Kallum Koczkur and Brad Miller, “Super-hydrophobic tin oxide nanoflowers”, Chem. Commun., 2004, 1964 – 1965
[27] Z. R. Dai, Z. W. Pan and Z. L. Wang, Z. R. Dai, Z. W. Pan and Z. L. Wang,” Ultra-long single crystalline nanoribbons of tin oxide”, Solid State Commun. , 2001, 118, No. 7, 351
[28] Y. Liu, J. Dong, and M. Liu, “Well-Aligned Nano-Box-Beams of SnO2”, Adv. Mater. 2004, 16, No.4, 353
[29] Yigal Lilach, Jin-Ping Zhang, Martin Moskovits, and Andrei Kolmakov, “Encoding Morphology in Oxide Nanostructures during Their Growth”, Nano Lett., Vol. 5, No. 10, 2005
[30] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, and Z.L. Wang, “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties”, Small 2006, 2, No. 1, 116
[31] Y.S. He, J.C. Campbell, R.C. Murphy, M.F. Arendt, and J.S. Swinnea, “Electrical and optical characterization of Sb-SnO2”, J. Mater. Res. 1993, 8, 3131
[32] W. Dazhi, W. Shulin, C. Jun, Z. Suyuan and L. Fangqing, “Microstructure of SnO2”, Phys. Rev. B. 1994, 49, 282
[33] C. Tatsuyama, and S, Ichimura, “Electrical and Optical Properties of GaSe-SnO 2 Heterojunctions”Jpn. J. Appl. Phys. 1976, 15, 834
[34] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles”, Nano Lett. 2005, 5(4), 667
[35] Q. Wan, and T.H. Wang, “Single-crystalline Sb-doped SnO2 nanowires: synthesis and gas sensor application”, Chem. Commun. 2005, 3841
[36] D.R. Vij and N. Singh, “Luminescence and related properties of II-IV semiconductors”, Nova Science, Commack, NY, 1998
[37] 范成至,“以二氧化錫為氣體感測材料之特性探討 ”, 碩士論文,國立交通大學, 1994
[38] X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, “Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices”, Appl. Phys. Lett., Vol. 83, No. 9, 2003
[39] P.K.Song, M.W atanabe, M.Kon, A.Mitsui, Y.Shigesato, “Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering”, Thin Solid Films, 2002, 411, 82–86
[40] Keun-Soo Kim, Seog-Young Yoon, Won-Jae Lee and Kwang Ho Kim, “Surface morphologies and electrical properties of antimony-doped tin oxide films deposited by plasma-enhanced chemical vapor deposition “, Surf. Coat. Technol., Volume 138, Issues 2-3, 2001, 229-236
[41] A. E. Rakhshani, Y. Makdisi, and H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, J. Appl. Phys., 1998, 83, No.2, 15
[42]X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang , “Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires”, Appl. Phys. Lett., 2006, 88
[43] P. Nguyen, H.T. Ng, J. Kong, A.M. Cassell, R. Quinn, J. Li, J. Han, M. McNeil, and M. Meyyappan, “Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays”, Nano Lett. 2003, 3, No. 7, 925
[44]http://www.veeco.com/learning/learning_vaporelements.asp
[45] X.L. Yuana, L. Lazzarinib, G. Salviatib, M. Zha, T. Sekiguchi,
“Cathodoluminescence characterization of SnO2 nanoribbons grown by vapor transport technique”, Materials Science in Semiconductor Processing, 2006, 9, 331–336
[46] Giancarlo Salviati, Laura Lazzarini, Ming Zheng Zha, Vincenzo Grillo, and Elvio Carlino, “Cathodoluminescence spectroscopy of single SnO2 nanowires and nanobelts”, phys. stat. sol. (a) 202, No. 15 (2005)
[47] David Maestre, Julio Ramírez-Castellanos, Pedro Hidalgo, Ana Cremades, José M. González-Calbet, and Javier Piqueras, “Study of the Defects in Sintered SnO2 by High-Resolution Transmission Electron Microscopy and Cathodoluminescence”, Eur. J. Inorg. Chem. 2007, 1544–1548
[48] D. Maestre, A. Cremades, and J. Piqueras, “Cathodoluminescence of defects in sintered tin oxide”, J. Appl. Phys. volume 95