簡易檢索 / 詳目顯示

研究生: 林聖傑
Sheng-Jie Lin
論文名稱: 酸鹼與溫度應答複合型奈米微胞之研發及其在細胞內藥物傳輸之應用
Investigation and Intracellular Drug Delivery Application of Thermal / pH Sensitive Mixed Micelles
指導教授: 薛敬和
Ging-Ho Hsiue
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 臨界微胞濃度臨界微胞溫度熱衝擊程序自我組裝核殼結構EPR效應包飲作用細胞內藥物釋放
外文關鍵詞: CMC, CMT, LCST, Intracellular drug delivery, mPEG-b-P(NnPAAm-co-VIm)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,奈米技術的觸角已延伸到各個領域,尤其在生醫與生技的潛力更凸顯其重要性。近幾年發展中,奈米技術已從單一組成奈米微胞發展至複合型奈米微胞,揉合了各組成奈米微胞之優勢於一身,因此倍受矚目可說是日後奈米技術發展新星。
    本研究主要以開發新系統、組成及製程製備複合型奈米微胞為主軸,首先成功將兩性質迥異高分子,一為具有臨界微胞濃度 (CMC) 之雙性團聯共聚物mPEG-b-PLA,另一則為具有臨界微胞溫度 (CMT) 之溫度/酸鹼應答型團聯共聚物mPEG-b-P(NnPAAm-co-VIm),以熱衝擊程序 (Hot shock protocol) 使其自我組裝 (self-assembly) 形成具有核殼結構 (core shell structure) 且微胞粒徑較小 (70~100nm) 及分佈均一 (PI<0.2) 之複合型奈米微胞。
    兩團聯共聚物在複合型奈米微胞中各扮演了舉足輕重的角色。mPEG-b-PLA使mPEG-b-P(NnPAAm-co-VIm)的結構更加穩定,不會因為溫度的下降而使結構迅速瓦解;此外,藉由環境酸鹼值的改變使mPEG-b-P(NnPAAm-co-VIm)在人類體內溫度37℃即可讓結構完全破壞,同時在短時間內瓦解mPEG-b-PLA結構,改善其在體內降解緩慢之缺點。
    為了取得最佳複合型奈米微胞組成比例,本研究以動態光散射粒徑分析儀量測混合後之微胞粒徑大小與分佈,並以螢光光譜儀量測螢光染劑pyrene發散波長強度I1/I3的變化,觀察在不同酸鹼值環境下結構破壞的情形,最後將複合型奈米微胞溶於含有4wt% BSA緩衝溶液,模擬複合型奈米微胞於體內循環之穩定性。
    本研究係以製備出的複合型奈米微胞包覆疏水性抗癌藥物-Doxorubicin做為細胞內藥物釋放之用。以靜脈注射方式使複合型奈米微胞載體進入體內,經由EPR效應 (Enhanced Permeability and Retention effect) 累積於腫瘤組織後,利用包飲作用 (endocytosis) 吞噬高分子載體進入細胞,因胞內酸性胞器的影響使得imidazole group被質子化 (protonation) 而改變PNnPAAm低溫臨界溶液溫度 (LCST) 達到結構破壞而釋放出藥物。
    本研究以熱衝擊程序所製備之複合型奈米藥物微胞,其藥物包覆率均達30%,於體外模擬藥物釋放當所處環境pH5.0時其藥物釋放率可達60%以上,且處於環境pH7.0時因為藥物突釋 (initial burst) 的關係藥物釋放率保持在10%左右。此外,將包覆藥物之奈米微胞與人類子宮頸癌HeLa細胞共同培養72小時後可發現在高濃度下 (100μg/mL) 與未包覆之藥物具相同細胞毒殺性。並由共軛焦顯微鏡可觀察到藥物在細胞內分佈與釋放之行為乃經由包飲作用後進入細胞,使藥物累積於細胞質中而後進入細胞核。
    綜合以上所述,可知複合型奈米微胞兼具環境應答、生物可分解與低毒性等優點,能於體內循環時保持穩定的結構而在胞內因酸性胞器釋放出藥物達到適時、適時之控釋效果,因此在藥物傳輸上極具開發之潛力。


    A novel mixed micelles composed of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-b-PLA) and methoxy poly(ethylene glycol)-b-poly(N-n-propylacrylamide-co-vinylimidazole) (mPEG-b-P(Nn-
    PAAm-co-VIm)) diblock copolymers, having critical micelle concentration (CMC) and critical micelle temperature (CMT) properties, were successful prepared in this study. Such nanostructures have well biocompatibility and thermal/pH sensitivity owing to their component natures. Based on these advantages, mixed micelles had a candidate as drug carriers for cancer therapy.
    The thermal/pH responsive properties of mixed micelles can be measured by UV/vis spectrometer at 542 nm. The lower critical solution temperature (LCST) occurred at 21.5℃~35℃ and gradually increased with reducing environment pH, and therefore we utilized its special behavior to prepare well-mixed micelles that exhibited a uniform size about 75~100nm and narrow polydispersity about 0.1~0.2 under 37℃ buffer solution via hot-shock protocol. Furthermore, the use of pyrene as probe for fluorescence spectroscopic measurement could observe that the I1/I3 decreased with raising surrounding temperature, indicating that the probe diffused from aqueous phase to the core of mixed micelles.
    The characteristics and morphologies of mixed micelles were analyzed from 1H-NMR, DLS, zeta potential, fluorescence spectrometer, AFM, and TEM. Additionally, doxorubicin (Dox) was incorporated into mixed micelles for cancer therapy. In neutral surroundings, the release of Dox from mixed micelles was less. In contrast, a significant release of Dox was observed in acidic surroundings about pH<6. The amount of drug released from mix micelles was isolated from mixed micelles buffer solution by ultrafiltration and measured by UV/vis spectrometer at 485 nm in a time-course procedure.
    The result of CLSM observation indicated the loading drug successfully released in the acidic organelles due to the deformation of the micelle structure.
    Above all, the release of drug from mixed micelles could be strongly controlled by pH changes. From these results, the novel mixed micelles showed high potential for drug carriers in intracellular drug delivery.

    目 錄 摘 要 I Abstract III 目 錄 V 圖 目 錄 VIII 表 目 錄 XII 第一章 研究動機與背景 1 第二章 文獻回顧 3 2-1 腫瘤組織構造與奈米藥物傳輸載體之關係 3 2-1-1 藥物載體吞噬之機制 4 2-1-1 高分子微胞在藥物載體之應用 8 2-2 高分子微胞之設計 11 2-2-1 高分子微胞形成原理 12 2-2-2 酸鹼應答型高分子 13 2-2-3 溫度應答型高分子 15 2-3 複合型奈米微胞 18 2-3-1 高分子/微脂粒複合型奈米微胞 18 2-3-2 高分子/高分子複合型奈米微胞 20 2-4單體材料性質與應用 22 2-4-1 Poly(N-vinylimidazole)(PVIm)之性質與應用 22 2-4-2 Poly(N-isopropylacrylamide) (PNIPAAm) 之性質與應用 24 第三章 實驗方法 26 3-1 實驗藥品 26 3-2 儀器與裝置 28 3-3 名詞對照 29 3-3 雙性團聯共聚合物mPEG-b-PLA (Block I) 之合成 30 3-4 溫度/酸鹼應答團聯共聚物mPEG-b-P(NIPAAm/NnPAAm-co-VIm) (Block II/Block III )之合成 30 3-4-1 酯化反應催化劑DPTS之合成 30 3-4-2 巨起始劑mPEG2-ABCPA之合成 31 3-4-3 單體N-n-propylacrylamide (NnPAAM) 之合成 32 3-4-4 溫度/酸鹼應答團聯共聚物mPEG-b-P(NIPAAm/NnPAAm-co -VIm) (Block II/Block III) 之合成 33 3-5 共聚合物之結構鑑定與分析 34 3-5-1 1H-NMR結構鑑定與數目平均分子量鑑定 34 3-5-2 FT-IR鑑定 34 3-5-3 GPC分子量分佈鑑定 34 3-5-4 DSC熱性質分析 34 3-5-5臨界微胞濃度 (Critical Micelle Concentration, CMC) 分析34 3-6 奈米微胞之製備 35 3-7 兩成分複合型奈米微胞之製備 35 3-8 單一/複合型奈米微胞之鑑定與性質分析 36 3-8-1 單一/複合型奈米微胞粒徑分析 36 3-8-2 單一/複合型奈米微胞核結構1H-NMR鑑定 36 3-8-3 單一/複合型奈米微胞相轉移 (Phase transition) 分析 36 3-8-4 單一/複合型奈米微包 (Critical Micelle Temperature,CMT) 分析 37 3-8-5 單一/複合型奈米微胞界面電位分析 37 3-8-6 單一/複合型奈米微胞表面結構分析(AFM) 38 3-8-7 單一/複合型奈米微胞殼核結構分析(TEM) 38 3-8-8 複合型奈米微胞之安定性測試 38 3-8-9 複合型奈米微胞之藥物包覆及性質鑑定 39 3-8-10 複合型奈米微胞之藥物釋放行為探討 39 3-8-11 複合型奈米微胞之細胞毒殺測試 40 3-8-12 藥物分佈與微胞之內吞作用 41 第四章 結果與討論 42 4-1 兩團聯共聚合物mPEG-b-PLA (Block I)之製備與鑑定 42 4-2 Block I (mPEG-b-PLA) 臨界微胞濃度之鑑定 44 4-3 單體N-n-propylacrylamide (NnPAAm) 之合成與鑑定 46 4-4 酯化反應催化劑DPTS之合成與鑑定 47 4-5 巨起始劑mPEG2-ABCPA之合成與鑑定 49 4-6 溫度/酸鹼應答團聯共聚物mPEG-b-P(NIPAAm/NnPAAm-co-VIm) (Block II/Block III)之合成與鑑定 52 4-7 Block II / Block III奈米微胞之製備與性質鑑定 56 4-8 奈米微胞之溫度與酸鹼應答行為 59 4-9 Block III奈米微胞之CMT與核殼結構破壞討論 65 4-10兩成分複合型奈米微胞之製備與探討 69 4-11 複合型奈米微胞之核殼結構破壞討論 76 4-12 複合型奈米微胞之藥物包覆與性質探討 86 4-13 複合型奈米微胞之藥物釋放行為 91 4-14 單一/複合型奈米微胞細胞毒殺性測試 93 4-15 單一/複合型奈米藥物微胞於細胞內藥物釋放及分佈測試 99 第五章 結論 102 參考文獻 105

    1. F. Kohori, K. Skai, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano, J. Control. Release, 1998, 55, 87.
    2. J. E. Chung, M. Yokoyama, and T. Okano, J. Control. Release, 2000, 65, 93.
    3. M. D. C. Topp, P. J. Dijkstra, H. Talsma, and J. Feijen, Macromolecules, 1997, 30, 8518.
    4. C. L. Lo, K. M. Lin, G. H. Hsiue, Journal of Controlled Release, 2005, 104(3), 477-488.
    5. F. Kohori, M. Yokoyama, K. Sakai, and T. Okano, J. Control. Release, 2002, 78, 155.
    6. Putnam D. and Kopecek J., Adv. Polym. Sci., 1994; 122: 55
    7. Duncan R., Selective endocytosis, In V. H. Lee (ed.), Marcel Dekker, New York, 1986, 581
    8. Hoes C. J. T. and Feijen J., Makromol Chem. 1993; 70: 119
    9. Heuser J. and Evans L., J. Cell Biol., 1980; 84: 560
    10. I. Pastan, M.C. Willingham, D. J. P. Fitz Gerald, Immunotoxins Cell, 1986,47, 641
    11. M.C. Jones, J.C. Leroux, J.Europ.Pharm.Biopharm., 1999, 101
    12. Maeda H., Wu J., Sawa T., Matsumura Y. and Hori K., J. Control. Release, 2000; 65: 271
    13. G.S. Kwon, K. Kataoka, Adv. Drug Deliv. Rev., 1995, 16, 295–309.
    14. G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Pharm. Res., 1993, 10, 970–974.
    15. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Sakurai, K. Kataoka, S. Inoue, Cancer Res , 1990, 50, 1693–1700.
    16. S. Katayose, K. Kataoka, J. Pharm. Sci., 1998, 87, 160–163.
    17. L.W. Seymour, K. Kataoka, A.V. Kabanov, Cationic block copolymers as self-assembling vectors for gene delivery, in: A.V. Kabanov, L.W. Seymour, P. Felgner (Eds.), Self-Assembling Complexes for Gene Delivery. From Laboratory to Clinical Trial, John Wiley and Sons, Chichester, 1998, pp. 219–239.
    18. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S. Katayose, Macromolecules, 1996, 29, 8556–8557.
    19. M.A. Wolfert, E.H. Schacht, V. Toncheva, K. Ulrich, O. Nazarova, L.W. Seymour, Human Gene Ther., 1996, 7, 2123–2133.
    20. R. Nagarajan, K. Ganesh, Macromolecules, 1989, 22, 4312–4325.
    21. L. Xing,W.L. Mattice, Langmuir, 1998, 14, 4074–4080.
    22. C. Allen, D. Maysinger, A. Eisenberg, Coll. Surf. B: Biointerf., 1999, 16, 1–35.
    23. Teng, M.E. Morrison, P. Munk, S.E. Webber, Macromolecules, 1998, 31, 3578–3587.
    24. Daniel W. Pack,* David Putnam, Robert Langer, Design of Imidazole-Containing Endosomolytic Biopolymers for Gene Delivery, BIOTECHNOLOGY AND BIOENGINEERING
    25. Marie-Christine Jones, Jean-Christophe Leroux, European Journal of Pharmaceutics and Biopharmaceutics, 1999 ,48,101-111.
    26. M.C. Jones, J.C. Leroux, Eur. J. Pharm. Biopharm. 1999, 48, 101.
    27. P.H. Elworthy, A.T. Florence, C.B. Macfarlane (Ed.), Solubilization by Surface Active Agents, Chapman and Hall, London, UK, 1968.
    28. Z. Gao, A. Eisenberg, Macromolecules 1993, 26, 7353.
    29. F.M. Winnik, A.R. Davidson, G.K. Hamer, H. Kitano, Macromolecules 1992, 25, 1876.
    30. P. Alexandridis, V. Athanassiou, S. Fuluda, T.A. Hatton, Langmuir 1994, 10, 2604.
    31. P. Alexandridis, J.F. Holzwarth, T.A. Hatton, Macromolecules 1994, 27, 2414.
    32. Tonge SR, Tighe BJ. ,Adv. Drug Deliv Rev, 2001,53,109-22.
    33. Philippova OE, Hourdet D, Audebert R, Khokhlov AR. Macromolecules, 1999,32,6646-51.
    34. Pinkrah VT, Snowden MJ, Mitchell JC, Seidal J. , Langmuir, 2003,19,585-90.
    35. S. Liu., S. P. Armes, Langmuir, 2003, 19, 4332.
    36. L. E. Bromberg, E. S. Ron, Adv. Drug Deliv. Rev., 1998, 31, 197.
    37. A. S. Hoffman, A. Afrassiabi, and L.C. Dong., J. Contr. Rel., 1986, 4, 213.
    38. Y. H. Bae, T. Okano and S. W. Kim. Makromol. Chem. Rapid Commun., 1988, 9, 185.
    39. A. Muhlebach, S.G. Gaynor, and K. Matyjaszewski, Macromolecules, 1998, 31, 6046.
    40. Jayachandran N. Kizhakkedathu, Kainthan Rajesh Kumar, Diane Goodman and Donald E. Brooks, Polymer, 2004, 45, 7471–7489.
    41. J.E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, and T. Okano, Colloids Surfaces (B: Biointerfaces), 1997, 9, 37.
    42. Y. H. Bae, T. Okano and S. W. Kim. Makromol. Chem. Rapid Commun., 1988, 9, 185.
    43. L. Dong and A. Hoffman., J. Contr. Rel., 1991, 15, 141.
    44. C. S. Brazel and N. A. Peppas., J. Contr. Rel., 1996, 39, 57.
    45. G. Chen and A. S. Hoffman., Nature, 1995, 373, 49.
    46. T. Nonaka, T. Ogata and S. Kurihara., J. Applied polym. Sci., 1994, 52, 951.
    47. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai and T. Okano., Nature, 1995, 374, 240.
    48. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Control. Release, 1997, 48, 157.
    49. J. E. Chung, M. Yokoyama, T. Okano, J. Control. Release, 2000, 65, 93.
    50. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato, Y. Sakurai, T. Okano, Colloids Surf. B Biointerf., 1999, 16, 195.
    51. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Journal of Controlled Release, 1998, 53 , 119-130.
    52. V. S. Trubetskoy, Adv. Drug Deliv. Rev., 1999, 37, 81.
    53. P. A. Sivakumar, K. Panduranga Rao, Reactive & Functional Polymers, 2001, 49, 179–187.
    54. Anna Kim, Mi-Ok Yun, Yu-Kyoung Oh, Woong-Shick Ahn, Chong-Kook Kim, International Journal of Pharmaceutics, 1999, 180, 75–81.
    55. Chittima Managit, Shigeru Kawakami, Makiya Nishikawa, Fumiyoshi Yamashita, Mitsuru Hashida, International Journal of Pharmaceutics, 2003, 266, 77–84.
    56. Jordi Boada, Montserrat Gallardo, Marı´a Asuncio´n Alsina, Joan Estelrich, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001,182, 191–198.
    57. Hirofumi Takeuchi, Hiroyuki Kojima, Hiromitsu Yamamoto, Yoshiaki Kawashima, Journal of Controlled Release, 2001, 75 , 83–91.
    58. Junhwa Shin, Pochi Shum, David H. Thompson, Journal of Controlled Release, 2003, 91,187–200.
    59. Hirofumi Takeuchi, Hiromitsu Yamamoto, Toshitada Toyoda, Hidekazu Toyobuku, Tomoaki Hino, Yoshiaki Kawashima, International Journal of Pharmaceutics, 1998, 164, 103–111.
    60. Hirofumi Takeuchi, Hiroyuki Kojima, Toshitada Toyoda, Hiromitsu Yamamoto, Tomoaki Hino, Yoshiaki Kawashima, European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 123-129.
    61. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai and T. Okano., Nature, 1995, 374, 240.
    62. S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Control. Release, 1997, 48, 157.
    63. J. E. Chung, M. Yokoyama, T. Okano, J. Control. Release, 2000, 65, 93.
    64. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato, Y. Sakurai, T. Okano, Colloids Surf. B Biointerf., 1999, 16, 195.
    65. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Journal of Controlled Release, 1998, 53 , 119-130.
    66. V. S. Trubetskoy, Adv. Drug Deliv. Rev., 1999, 37, 81.
    67. S. Liu., S. P. Armes, Langmuir, 2003, 19, 4332.
    68. Futian Liu and Adi Eisenberg, J. Am. Chem. Soc., 2003, 125, 15059-15064.
    69. R. Chandra, R. Rustgi, Prog. Polym. Sci., 1998, 23, 1273-1335.
    70. J. R. Gomez and G. Gomez, Brit. J. Clin. Pract., 1972, 26, 33-34.
    71. K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev., 1999, 99, 3181 -3198.
    72. I. C. Kwon, Y. H. Bae and S. W. Kim, Nature, 1991, 354, 291.
    73. H. R. Kricheldorf, I. Kreiser-Saunders, C. Boettcher, Polymer, 1995, 36(6), 1253~1259.
    74. S. Li, H. Garreau, B. Pauvert, J. McGrath, A. Toniolo, M. Vert, Biomacromolecules, 2002, 3, 525-530.
    75. L. Liu, S. Li, H. Garreau, M. Vert, Biomacromolecules, 2000, 1, 350-359.
    76. M.-C. Jones, J.-C. Leroux, Eur. J. Pharm. Biopharm., 1999, 48, 101–111.
    77. P.H. Elworthy, A.T. Florence, C.B. Macfarlane (Eds.), Solubilization by Surface Active Agents, Chapman and Hall, London, UK, 1968.
    78. Z. Gao, A. Eisenberg, Macromolecules, 1993, 26, 7353–7360.
    79. G. Savin, W. Burchard, C. Luca, and C. Beldie, Macromolecules 2004,37,6565-6575.
    80. Belma isik, Adv. Poly. Tech.,2003,3,246-251.
    81. C. Pichon, C. Goncalves, P. Midoux, Adv. Drug Deliv. Rev., 2001 ,53,75– 94.
    82. J.M. Benns, J.S. Choi, R.I. Mahato, J.S. Park, S.W. Kim, Bioconjug. Chem. , 2000,11 ,637–645.
    83. P. Midoux, M. Monsigny, Bbioconjug. Chem., 1999, 10, 406-411.
    84. 伊藤昭二, Kobunshi Ronbunshu, 1989, 46(7), 437-443.
    85. M.D. Whitmore, J. Noolandi, Macromolecules 1985, 18, 657.
    86. L. Leibler, H. Orland, J.C. Wheeler, J. Chem. Phys. 1983, 79, 3550.
    87. Cammas S., Suzuki K., Sone C., Sakurai Y., Kataoka K., and Okano T., J. Control. Release, 1997, 48, 157.
    88. Kohori F., Skai K., Aoyagi T., Yokoyama M., Sakurai Y., and Okano T., J. Control. Release, 1998, 55, 87.
    89. Chung J.E., Yokoyama M., and Okano T., J. Control. Release, 2000, 65, 93.
    90. Topp M.D.C., Dijkstra P.J., Talsma H., and Feijen J., Macromolecules, 1997, 30,8518.
    91. S. Cammas-Marion, T. Okano, K. Kataoka, Colloids and Surfaces (B: Biointerfaces) 1999, 16, 207.
    92. Kohori F., Yokoyama M., Sakai K., and Okano, Teruo, J Control. Release, 2002, 78, 155.
    93. Dube D., Francis M., Leroux J.C., and Winnik F.M., Bioconjugate Chem., 2002, 13, 685.
    94. Jeffrey S. Moore and Samuel I. Stupp , Macromolecules ,1990,23, 65-70.
    95. J. Milton Harris and Samuel Zalipsky, Poly(ethylene glycol) Chemistry and Biological Applications, ACS Symposium Series 680.
    96. Vorobyoba, O.; Lau, W.; Winnik, M. A. Langmuir 2001, 17,1357.
    97. Kalyanasundaram, K. In Photochemistry in MicroheterogeneousSystems; Academic Press: Orlando, FL, 1987.
    98. Grieser, F.; Drummond, D. J. J. Phys. Chem. 1988, 92, 5580.
    99. Almgren, M.; Lofroth, J. E.; Van Stem, J. J. Phys. Chem,1986,90, 4431.
    100. Virtanen, J.; Holappa, S.; Lemmetyinen, H.; Tenhu, H., Macromolecules 2002, 35, 4763.
    101. K. Kalyanasundaram, J.K. Thomas, J. Am. Chem. Soc., 1997, 99, 2039.
    102. Ryuhei Motokawa, Kanae Morishita, Satoshi Koizumi,Takayuki Nakahira, and Masahiko Annaka, Macromolecules,2005,38, 5748-5760.
    103. Jianhui Xia, Xuan Zhang, and Krzysztof Matyjaszewski, Macromolecules, 1999, 32, 3531-3533.
    104. D. Neradovic, O. Soga, C.F. Van Nostrum, W.E. Hennink, Biomaterials, 2004 , 25,2409–2418.
    105. Jin Woo Yi, Kun Na, You Han Bae, Macromol. Symp. ,2004 ,207, 131-137.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE