簡易檢索 / 詳目顯示

研究生: 楊承翰
Yang, Cheng-Han
論文名稱: 於空間頻域中的特徵圖壓縮
Feature Map Compression in Spatial Frequency Domain
指導教授: 鄭桂忠
Tang, Kea-Tiong
陳煥宗
Chen, Hwan-Tzong
口試委員: 李哲榮
Lee, Che-Rung
邱瀞德
Chiu, Ching-Te
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 32
中文關鍵詞: 機器學習特徵圖壓縮小波轉換
外文關鍵詞: Machine learning, Feature Map Compression, Wavelet Transform
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套特徵圖壓縮方法,以小波轉換減少特徵圖數值分布在空間
    上的相關性,降低了壓縮資料的夏農熵,使之後的熵編碼能夠取得更好的壓
    縮的效果。在 Resnet-18 於 ImageNet 上的測試,本方法能達到 9.5 的壓縮
    率,並同時提升 0.5% 的正確率 。本論文亦提出一套省略部分高頻訊號的
    方法,於模型重新訓練時引入可訓練的通道選擇參數,提供省略部分高頻訊
    號的依據。於 Resnet-20 於 Cifar-10 上的測試 ,顯示在保有 75%、50%、
    25% 高頻訊號的情況下,此方法能達到 11、13、17 的壓縮率。我們
    亦進行了對照實驗,比較學習以及固定通道選擇參數的模型表現,證明了學
    習通道選擇參數的有效性。最後於 Resnet-18 於 ImageNet 上的測試,在保
    有 75%、50%、25% 高頻訊號的情況下,分別達到 11、13、16 的壓
    縮率,達到現在最佳方法的水準。


    We present a feature map compression method for convolutional neural networks. The proposed method adopts discrete wavelet transform (DWT) in the compression pipeline to achieve a compression rate of 9.5X with 0.5% accuracy gain on ResNet-18. We also propose a mechanism to remove redundant high-frequency components in the feature map, which is achieved by including the channel selection parameters during retraining to provides the guideline for eliminating high-frequency components. Through ablation study we show that the channel selection parameters are effective in improving the performance. With retaining ratio = 0.75, 0.5, and 0.25, our method can further achieve 11X, 13X and 16X compression rates with 0.02% of accuracy gain, and 0.06% and 0.57% of accuracy drop respectively on ResNet-18.

    摘 要 5 Abstract 6 1 Introduction 7 2 RelatedWork 10 3 ProposedMethod 13 3.1 Compression 13 3.2 Overview 14 3.3 DiscreteWaveletTransform 14 3.4 Quantization 15 3.5 Encoding 16 3.6 DroppingRedundantHighFrequencyComponents 17 3.6.1 Retraining 17 3.6.2 Inference 18 4 Experiments 19 4.1 Cifar-10 19 4.1.1 Analysis 20 4.1.2 AblationStudy 23 4.2 ImageNet 25 4.3 ComputationOverhead 25 5 Conclusion 28

    [1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos. Cn-
    vlutin: Ineffectual-neuron-free deep neural netw ork computing. In 2016 ACM/IEEE
    43rd Annual International Sympo sium o n Computer Architecture (ISCA), pages 1–
    13, 2016.
    [2] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagating gradients
    through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.
    [3] L. Cavigelli and L. Benini. Extended bit-plane compression for convolutional neural
    network accelerators. In 2019 IEEE International Conference on Artificial Intelli-
    gence Circuits and Systems (AICAS), pages 279–283. IEEE, 2019.
    [4] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen. Flipping structure: an
    efficient vlsi architecture for lifting-based discrete wavelet transform. In Asia-Pacific
    Conference on Circuits and Systems, pages 383–388 vol.1, 2002.
    [5] Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen. Generic ram-based ar-
    chitectures for two-dimensional discrete wavelet transform with line-based method.
    IEEE Transactions on Circuits and Systems for Video Technology, pages 910–920,
    2005.
    [6] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 14.5 eyeriss: An energy-efficient recon-
    figurable accelerator for deep convolutional neural networks. In 2016 IEEE Interna-
    tional Solid-State Circuits Conference, ISSCC, pages 262–263, 2016.
    [7] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
    networks with binary weights during propagations. In NIPS, 2015.
    [8] G. Georgiadis. Accelerating convolutional neural networks via activation map com-
    pression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
    Recognition, pages 7085–7095, 2019.
    [9] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural net-
    work with pruning, trained quantization and huffman coding. CoRR, abs/1510.00149,
    2016.
    [10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
    In Proceedings of the IEEE conference on computer vision and pattern recognition,
    pages 770–778, 2016.
    [11] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural
    networks. In IEEE International Conference on Computer Vision, ICCV 2017, Venice,
    Italy, October 22-29, 2017, pages 1398–1406, 2017.
    [12] M. Horowitz. 1.1 computing’s energy problem (and what we can do about it). In
    2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
    (ISSCC), pages 10–14. IEEE, 2014.
    [13] D. H. J. L. G. P. H.-J. Y. Jinsu Lee, Juhyoung Lee. 7.7 lnpu: A 25.3 tflops/w sparse
    deep-neural-network learning processor with fine-grained mixed precision of fp8-
    fp16. In 2019 IEEE International Solid-State Circuits Conference-(ISSCC)., pages
    142–144. IEEE, 2019.
    [14] J. Kim, M. Sullivan, E. Choukse, and M. Erez. Bit-plane compression: Transforming
    data for better compression in many-core architectures. In 2016 ACM/IEEE 43rd
    Annual International Symposium on Computer Architecture (ISCA), pages 329–340,
    June 2016.
    [15] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo. Unpu: A 50.6tops/w unified
    deep neural network accelerator with 1b-to-16b fully-variable weight bit-precision. In
    2018 IEEE International Solid - State Circuits Conference - (ISSCC), pages 218–220,
    Feb 2018.
    [16] Z. Liu, B.Wu,W. Luo, X. Yang,W. Liu, and K.-T. Cheng. Bi-real net: Enhancing the
    performance of 1-bit cnns with improved representational capability and advanced
    training algorithm. In ECCV, 2018.
    [17] M. W. Marcellin, M. J. Gormish, A. Bilgin, and M. P. Boliek. An overview of JPEG-
    2000. In Data Compression Conference, DCC, pages 523–544, 2000.
    [18] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool. Conditional
    probability models for deep image compression. In 2018 IEEE Conference on Com-
    puter Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
    18-22, 2018, pages 4394–4402, 2018.
    [19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classifica-
    tion using binary convolutional neural networks. In ECCV, 2016.
    [20] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S.W. Keckler. Compress-
    ing dma engine: Leveraging activation sparsity for training deep neural networks. In
    2018 IEEE International Symposium on High Performance Computer Architecture
    (HPCA), pages 78–91, 2018.
    [21] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep
    neural networks. In Advances in Neural Information Processing Systems 29: Annual
    Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
    Barcelona, Spain, pages 2074–2082, 2016.
    [22] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data compression.
    Commun. ACM, 30(6):520–540, 1987.
    [23] B.-F. Wu and C.-F. Lin. A high-performance and memory-efficient pipeline architec-
    ture for the 5/3 and 9/7 discrete wavelet transform of jpeg2000 codec. IEEE Transac-
    tions on Circuits and Systems for Video Technology, pages 1615–1628, 2005.
    [24] H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda, T. Mori, S. Okada,
    T. Watanabe, Y. Matsuo, Y. Yamada, T. Ichikawa, and Y. Matsushita. Image pro-
    cessor capable of block-noise-free jpeg2000 compression with 30 frames/s for digital
    camera applications. In 2003 IEEE International Solid-State Circuits Conference,
    2003. Digest of Technical Papers. ISSCC., pages 46–477 vol.1, 2003.
    [25] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.
    Cambricon-x: An accelerator for sparse neural networks. In 2016 49th Annual
    IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12,
    2016.

    QR CODE