簡易檢索 / 詳目顯示

研究生: 謝欣如
Hsin-Ju Hsieh
論文名稱: 以全細胞糖化與脂肪脢酯化系統生產麴酸及L-維他命C衍生物之研究
Studies on Synthesis of Kojic Acid and L-Ascorbic Acid Derivatives Using Whole Cells for Glyosylation and Lipase for Esterification
指導教授: 吳文騰
Wen-Teng Wu
朱一民
I-Ming Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 126
中文關鍵詞: 全細胞酯化酵素麴酸維他命C
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為運用酵素法合成麴酸與L-維他命C衍生物,改善其對光與熱的高度敏感性與減低對皮膚具刺激性的傷害,研究策略為利用脂解酵素酯化與全細胞糖化,來降低對皮膚的刺激傷害,以及增加衍生物對水溶性與酯溶性的溶解度、穩定度、產業應用性。
    L-維他命C棕櫚酯生成條件:固定化酵素Candida antartica Lipase B (Novozym 435)為催化劑,L-維他命C與Palmitic acid反應基質比為1:4,50℃下以10 mL丙酮反應24小時,轉化率為47.6 %,若添加3g/L的分子篩,其轉化率可提高到61.3 %。Novozym 435重複使用10次來生產L-維他命C棕櫚酯的平均轉化率為44.5 %,分離純化平均純度為99.8 %,平均回收率為89.1 %。固定化脂解酵素大幅提昇懸浮態酵素的酯化活性,L-維他命C棕櫚酯轉化率為46 %。利用正己烷與低溫溶解度降低而析出L-維他命C棕櫚酯,其純化後純度為83 %,回收率為76 %。
    L-維他命C糖苷生成條件:Aspergillus niger較佳的反應條件為1:9反應基質比,固定化細胞顆粒濃度4g/6 mL,0.02 M pH 5.5 Sodium acetate buffer,30℃下反應12小時,流速為12 ml/min,利用4 %褐藻膠固定化7g/L細胞為反應催化劑,固定化細胞顆粒重複使用13 次,其平均轉化率為72 %。α-Amylase、α-glucosidase、Glucoamylase及Glucosyltransferase在Pellet與Broth中根據培養天數來探討其酵素水解p-NGP之活性,Glucoamylase、α-glucosidase及Glucosyltransferase在Pellet與Broth中水解p-NGP之活性較α-Amylase顯著。Broth中的水解活性,隨著胞外酵素培養天數的增加而增加,Pellet中的水解活性,隨著胞外酵素培養天數的增加而減少。Aspergillus niger全細胞胞內與胞外糖化酵素之探討數據分析顯示,在Culture supernatant中,alpha-glucosidase在維他命C糖化反應中扮演最重要角色;在Pellet中,glucoamylase在維他命C糖化反應中是最主要的角色。分離純化L-維他命C醣苷,選用Amberlite□ CG-400 anion exchange填充管柱,利用0.2 M NaCl溶液來脫附L-維他命C糖苷,合併使用Bio-Gel-P2填充管柱中,以二次水沖提出L-維他命C糖苷,其純度約為85 %,回收率約為75 %。
    麴酸糖苷生成之條件:突變株Xanthomonas campestris以麥芽糖為碳源及NH4Cl為氮源,基質比1/8於0.01M HEPES緩衝液中,30℃反應28小時,轉化率82%。利用Sepharose G10管柱與活性碳管柱,以10%及70%酒精沖提出麴酸糖苷,純度為76%,回收率為71%。
    黑色素細胞/纖維母細胞/角質細胞較佳的GAGs添加量分別為CS 0.8 mg/ml,DS 1.6 mg/ml,HA 0.1 mg/ml。Tyrosinase、tyrosinase-related protein 1、tyrosinase-related protein 2等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對黑素色具有抑制的能力,而且tyr-1基因強度≧tyr-2基因強度,推測黑色素生成路徑是生成Eumelanin而不是Pheomelanin。Keratin 6、keratin 16、keratin 17等基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對角質素生成具有正向的影響效應。Procollagen基因中,添加2 mM Ascorbyl Glucoside的基因強度中,顯示Ascorbyl Glucoside對collageng生成具有正向的影響效應。
    西方點墨法的實驗分析數據顯示在8mM的ascorbyl glucoside添加下,黑色素細胞/纖維母細胞/角質細胞在3D-scaffold內可生成較多的Collagen I。
    3D-scaffold中,對照組中黑色素細胞/纖維母細胞/角質細胞生成的Collagen I隨著培養時間增加而增加。細胞染色角質素,由於角質素抗體無高度特異性,以致無法清楚分辨出纖維母細胞及角質細胞。
    H&E細胞section染色圖顯示有投藥Ascorbyl glucoside的培養狀況下,細胞數生長的情況比不投藥Ascorbyl glucoside的好。
    Alcian Blue細胞section染色顯示有投藥Ascorbyl glucoside的培養狀況下,新生細胞數的情況比不投藥Ascorbyl glucoside的好。
    纖維母細胞投藥2mM培養,movie附加檔說明細胞遷移比未投藥的細胞遷移速度要快。說明ascorbyl glucoside有促進細胞遷移的效應,並且投藥的纖維母細胞定向性也大於未投藥的纖維母細胞,說明ascorbyl glucoside有促進細胞做直線遷移的效應。


    總目錄 頁次 摘要…………………………………………………………………….….i Abstract…………………………………………………………….….......iv 總目錄…………………………………………………………………....vii 圖目錄…………………………………………………………………...xiv 表目錄…………………………………………………………….….......xx 第一章 緒論……………………………………….……..………..…….1 1.1 黑色素簡介與美白機制…………………………………….…....2 1.1.1 黑色素………………………………………………….….…2 1.1.2美白藥□品的美白機制………………………………..….…4 1.2 UV對皮膚之影響…………………………………………….…..5 1.3 抗氧化機制………………………………………………….……5 1.4 酯化反應……………………………..……………………6 1.4.1脂肪脢特性………………………………………………...6 1.4.2 酯化反應機制………………………………………………7 1.5糖化反應……………………………………………….…8 1.5.1 醣化酵素………………………………………………9 1.5.2全細胞系統………………………………………..….10 1.6 研究動機…………………………………………………...….10 第二章 脂溶性L-維他命C製備及分離純化…………………………11 2.1 維他命C性質簡介………………………………………..……...11 2.2 材料與設備………………………………………………...……..12 2.2.1 酵素…………………………………………………................12 2.2.2 化學品…………………………………………………..……..13 2.3 分析項目及方法…………………………………………..….…..14 2.3.1 HPLC分析………………………………………………..…....14 2.3.2界面活性劑覆蓋酵素 (Surfactant-coated lipase)之製備方法..15 2.3.3蛋白質定量方法……………………………………….………15 2.3.4酵素活性測定方法………………………………………....….15 2.3.5 酯化L-維他命C之實驗方法………………….…….…….…16 2.3.6 L-維他命C棕櫚酯的分離純化方法………………..……..….16 2.4 固定化酵素酯化L-維他命C之實驗結果……………..……..…..18 2.4.1不同碳數脂肪酸對L-維他命C酯化反應之影響…….……...18 2.4.2不同碳數脂肪酸甲酯對L-維他命C酯化反應之影響………19 2.4.3不同碳數界面活性劑對L-維他命C酯化反應之影響……....21 2.4.4不同溶劑對L-維他命C酯反應之影響…………..…………..23 2.4.5基質比例對L-維他命C酯反應之影響…………………..…..23 2.4.6分子篩對L-維他命C酯反應之影響……………..…………..24 2.4.7溫度對L-維他命C棕櫚酯生成之影響……………….…..….25 2.4.8酵素重複使用對L-維他命C棕櫚酯轉化率之影響………….25 2.4.9酵素重複使用對L-維他命C棕櫚酯回收率與純度之影□T……………………………………………………………....26 2.5界面活性劑包覆脂解酵素(Surfactant-coated lipase)酯化L-維他命 □C……………………………………………………...…………….....28 2.5.1懸浮態脂肪脢對L-維他命C棕櫚酯生成之影響…………..….28 2.5.2界面活性劑包覆態脂解酵素含量對L-維他命C棕櫚酯生成之影 響………………………………………………………..……......29 2.5.3包覆態脂解酵素在不同基質比例下對L-維他命C棕櫚酯生成之 影響……………………………………………………..………30 2.5.4包覆態脂解酵素蛋白質含量與酵素活性………………….…..31 2.5.5 pH緩衝液對包覆態脂解酵素對L-維他命C棕櫚酯生成之影 響………..………………………………..………………..……31 2.5.6反應時間對包覆態脂解酵素對L-維他命C棕櫚酯生成之影響……………………………………………………..……..…..32 2.5.7包覆態脂解酵重複使用對維他命C酯化反應之影響………………………………………………………....….….33 2.6 結論………………………………………………………..…...........33 第三章 開發高穩定性之水溶性L-維他命C糖苷……………..……...35 3.1前言………………………………………………………………….35 3.2糖化菌株Aspergillus niger……………………..…………………..38 3.3 材料與設備……………………………………..………………….39 3.4 分析項目及方法……………………………………………..…….39 3.5 酵素合成方法…………………………………………………..….40 3.5.1 Aspergillus niger全細胞最佳生長條件之探討……………...…42 3.5.2 Aspergillus niger全細胞糖化水解酵素之活性探討…..…....….43 3.5.3 Aspergillus niger全細胞胞內與胞外糖化酵素之探討………...46 3.6固定化全細胞Aspergillus niger…………………………..…….….50 3.6.1固定化細胞之蛋白質含量…………………………...………….50 3.6.2固定化細胞之水解p-NGP之活性……………………..………50 3.6.3固定化細胞濃度對L-維他命C醣苷生成之影響……..………51 3.6.4固定化細胞顆粒活性與存放緩衝液對L-維他命C醣苷生成之 影響……………….………………………………………….....51 3.6.5固定化細胞顆粒濃度對L-維他命C醣苷生成之影響…….…52 3.6.6反應基質比例對L-維他命C醣苷生成之影響………….……52 3.6.7反應溫度對L-維他命C醣苷生成之影響……………….……54 3.7 酵素法放大生產糖苷化合物……………………………………….54 3.7.1反應流速之影響………………………………………………...54 3.7.2 固定化細胞顆粒之重複使用性………………………………..56 3.8維他命C醣苷之分離純化方法……………………………….…….56 3.9結論…………………………………………………………….……..57 第四章 分離水溶性麴酸與麴酸糖苷及其抑制黑色素能力之探討..…59 4.1 麴酸糖苷簡介……………………………………………...….…...69 4.2 突變技術…………………………………………………...……....60 4.2.1 突變劑種類………………………………………….…….……60 4.3 材料與設備………………………………………………....……...61 4.4 分析項目及方法…………………………………………..…….....61 4.5 實驗方法…………………………………………………..…….....63 4.6 突變態全細胞菌株糖化活性之探討………………….…………..65 4.6.1突變株BCRC 12354 No.29最佳培養條件之探討…………67 4.6.2突變株BCRC 12354 No.29最佳反應條件之探討………….70 4.7分離純化麴酸醣苷……………………………………..……..……73 4.8 結論………………………………………………………..…..…...75 第五章□維他命C糖苷在3D scaffold細胞中還原黑色素與刺激膠□□□原蛋白生成之影響………………………………………..…..…76 5.1前言……………………………………………..………………......76 5.2材料與設備………………………………………………….……...79 5.3分析項目及方法………………………………………………….....80 5.4實驗規劃流程…………………………………………..….….….....88 5.5 GAGs添加量在3D-scaffold內對細胞的影響………….….….…..89 5.6黑色素含量與phenolase活性測試………………………..………..91 5.7細胞DNA測試………………………………………………....…..91 5.8 RT-PCR分析………………………………………………………..92 5.9西方點墨法(Western blot)……………………………………..……97 5.10免疫螢光染色………………………………………………….…..98 5.11 H&E染色………………………………………………….……...102 5.12 Alcian blue染色…………………………………………………..105 5.13細胞遷移分析…………………………..…………………..…….107 5.14結論……………………………………………………….………110 第六章□祭袘P未來展望……………………………………………...112 Publication……………………………………………………..….…….116 參考文獻………………………………………………….………….…119 圖目錄 圖1.1黑色素的生化合成路徑………………………….…………….….4 圖1.2 脂肪分解脢催化反應………………………………………….…..9 圖1.3 Transglycosylation反應………………..………………………….10 圖2.1維他命C結構……………………………………………….……12 圖2.2維他命C中和高活性氧………………………………………….13 圖2.3 L-維他命C棕櫚酯結構式………………………………….……13 圖2.4 L-維他命C糖苷結構式…………………………………….……13 圖2.5界面活性劑包覆酵素製備方法…………….……………...…..…16 圖2.6 L-維他命C棕櫚酯Mass分析圖譜………………………………18 圖2.7 L-維他命C棕櫚酯的分離純化流程圖……………………….….19 圖2.8不同碳數脂肪酸對維他命C酯化反應之影響………….…..…..20 圖2.9不同碳數脂肪酸甲酯對維他命C酯化反應之影響………….....21 圖2.10不同HLB數值下的界面活性劑………………………….…….23 圖2.11 不同碳數界面活性劑對L-維他命C棕櫚酯化反應之影….....23 圖2.12基質比例對L-維他命C棕櫚酯生成之影響……………………25 圖2.13溫度對L-維他命C棕櫚酯生成之影響……………………..…26 圖2.14酵素重複使用對L-維他命C棕櫚酯轉化率之影響…………...27 圖2.15酵素重複使用對L-維他命C棕櫚酯回收率之影響………..…28 圖2.16酵素重複使用對L-維他命C棕櫚酯純度之影響…………..…28 圖2.17界面活性劑包覆脂解酵素示意圖………………………………29 圖2.18 不同來源的懸浮脂解酵素對L-維他命C棕櫚酯生成之影響...30 圖2.19 HLB3.4包覆Amano PS 含量對對L-維他命C棕櫚酯生成之影 響………………………………………………..………...…….31 圖2.20包覆態Amano PS於不同基質比例下對L-維他命C棕櫚酯生成 之影響……………………………………..…………..………..32 圖2.21反應時間對包覆態脂解酵素對L-維他命C棕櫚酯生成之影響………………………………………………………............33 圖2.22重複使用包覆態脂解酵素對L-維他命C棕櫚酯生成之影響…34 圖3.1 L-維他命C糖苷結構式………………………………….….……36 圖3.2糖苷酶催化合成反應的兩種模式………………………….……38 圖3.3全細胞菌株Aspergillus niger生成L-維他命C糖苷之測試..….41 圖3.4 L-維他命C醣苷Q-Tof LC Mass分析…………………….….…41 圖3.5(A) Aspergillus niger生長曲線與細胞乾菌重……………...…….42 圖3.5(B) Aspergillus niger反應6小時維他命C糖苷生成之轉化率...43 圖3.6(A) α-Amylase的水解活性…………………………………… …44 圖3.6(B) α-glucosidase的水解活性…………………………………….45 圖3.6(C) glucoamylase的水解活性…………………………………….45 圖3.6(D) Glucosyltransferase的水解活性…………………………...…46 圖3.7全細胞酵素純化與確定……………………………………….…47 圖3.8(A) Culture supernatant之MADI-TOF圖譜分析……………….48 圖3.8(B) Culture supernatant之MADI-TOF Alignment 分析圖…….48 圖3.8(C) Culture pellet之MADI-TOF圖譜分析………….….….……49 圖3.8(D) Culture pellet之MADI-TOF Alignment 分析圖……….…..49 圖3.9固定化╱未固定化細胞顆粒所含的蛋白質含量與水解p-NGP之活性……………………………………………………………....50 圖3.10不同的細胞包覆濃度與反應時間對維他命C糖苷轉化率之影響 …………………………………………………………………..51 圖3.11固定化細胞顆粒活性與存放緩衝液對生成維他命C糖苷之影響 …………………………………………………………….……..52 圖3.12固定化細胞顆粒濃度對生成維他命C糖苷之影響…………...53 圖3.13反應基質比珗鴷穻那□L命C糖苷之影響……………….…..53圖3.14反應溫度對生成維他命C糖苷之影響…………………….…..54 圖 3.15 固定床生物反應器示意圖…………………………………….55 圖3.16反應流速對生成維他命C糖苷之影響……………….………..55 圖3.17固定化細胞顆粒之重複使用性對生成維他命C糖苷之影響…56 圖3.18維他命C糖苷分離純化流程圖………………………….………57 圖4.1麴酸及麴酸糖苷之結構式………………………..………………59 圖4.2菌株突變流程圖…………………………………………..………63 圖4.3菌株吸光值與乾菌重之關係圖………………………..…………64 圖4.4全細胞菌株Xanthomonas campestris生成麴酸糖苷之測試……65 圖4.5(A)第一批次突變ATCC12354之結果………………………..…..66 圖4.5(B)第二批次突變BCRC□2354之結果…………………….….67 圖4.6碳源對麴酸糖苷生成之影響………..……………………………68 圖4.7氮源對麴酸糖苷生成之影響………...…………………………...68 圖4.8培養基pH對麴酸糖苷生成之影響..….........................................69 圖4.9培養時間對麴酸糖苷生成之影響…...…………………………...70 圖4.10基質比對麴酸糖苷生成之影響……...………………………….71 圖4.11反應液pH對麴酸糖苷生成之影響….........................................71 圖4.12反應時間對麴酸糖苷生成之影響……........................................72 圖4.13麴酸糖苷分離純化流程圖………………………………..……..73 圖4.14麴酸糖苷的Q-Tof LC Mass分析…………………………….…74 圖5.1皮膚細胞的相互作用關係………………….……………….……76 圖5.2 Keratinocyte-derived factors對黑色素細胞的影………………...77 圖5.3 Eumelanin生成途徑…………………………………………..…..77 圖5.4 GAGs 結構式 …………………………………..………………..78 圖5.5Genipin的交聯機制……………………………………………….81 圖5.6 3D-scaffold細胞實驗規劃之流程……………………...…………89 圖5.7 3D-scaffold的大小與SEM照相圖……………………………….90 圖5.8 GAGs不同添加量對黑色素/纖維母/角質細胞生長的影響…….90 圖5.10 3D-scaffold中細胞DNA的含量…………………………….…..92 圖5.11 (A) tyrosinase (tyr)的RT-PCR結果………………………………93 圖5.11 (B) tyrosinase-related protein 1 (tyr-1)的RT-PCR結果…….……94 圖5.11 (C) tyrosinase-related protein 2 (tyr-2)的RT-PCR結果…..………94 圖5.11 (D) keratin 6的RT-PCR結果……………………………..………95 圖5.11 (E) keratin 16的RT-PCR結果……………………………..…....95 圖5.11 (F)keratin 17的RT-PCR結果…………………………….…….111 圖5.11 (G) procollagen的RT-PCR結果……………………………….111 圖5.12 (A) 纖維母細胞/角質細胞/黑色素細胞添加不同濃度的ascorbyl glucoside,細胞與supernatant對Collagen I生成的影響……………………………………….………………....112 圖5.12 (B)纖維母細胞/角質細胞/黑色素細胞添加與不添加ascorbyl glucoside培養3W對Collagen I生成的影響……………………………………………….....................113 圖5.13 (A) 纖維母/角質/黑色素細胞未投藥AG之細胞螢光染色….114 圖5.13 (B) 纖維母/角質/黑色素細胞投藥8mM AG之細胞螢光染色115 圖5.13 (C) 纖維母/角質/黑色素細胞未投藥AG之細胞螢光染色…..................................................................................116 圖5.13 (D) 纖維母/角質/黑色素細胞投藥8mM AG之細胞螢光染色…………………………………………………………116 圖5.14 (A) 3D-scaffold材料無接種細胞的H&E染色………………117 圖5.14(B)為黑色素細胞投藥2mM AG培養4W下的H&E染色….118 圖5.14 (C)纖維母細胞未投藥與投藥2mM□AG培養4W下的H&E□□□□V色………………………………………………………118 圖5. 14 (D)纖維母/角質細胞未投藥與投藥4mM AG培養4W下的H&E染色………………………………………………………119 圖5.14(E)纖維母/角質/黑色素細胞未投藥與投藥8Mm AG培養4W下的H&E染色………………………..………………….119 圖5.15(A) 3D-scaffold材料無接種細胞與無添加GAGs的Alcian Blue染色………………………………………………………120 圖5.15(B)黑色素細胞投藥2mM AG培養4W下的Alcian Blue染色……………………………………..……….………….121 圖5.15(C)纖維母細胞未投藥與投藥2mM AG培養4W下的Alcian Blue染色…………………………………………….………….121 圖5. 15(D)纖維母/角質細胞未投藥與投藥4mM AG培養4W下的Alcian Blue染色………………………………..………..…..121 圖5.15(E)纖維母/角質/黑色素細胞未投藥與投藥8mM AG培養4W下的Alcian Blue染色…………………………………….…..122 圖5.16 (A) 纖維母細胞未投藥培養的細胞觀察圖…………………..123 圖5.16 (B) 纖維母細胞投藥2mM AG培養的細胞觀察圖……………………………………………………………....123 圖5.16 (C)纖維母細胞未投藥與投藥2Mm AG培養下的細胞平均遷移□□□速度…………………………………………………..…….124 圖5.16 (D)纖維母細胞未投藥與投藥2Mm AG培養下的細胞平均定向□□□性…………………………………………………………...124 表目錄 表1.1 美白藥妝品含量限制濃度……………………………………….2 表2.1預測不同L-維他命C酯類的轉化率……………………………22 表2.2不同溶劑對L-維他命C棕櫚酯轉化率之影響……………..…..24 表2.3包覆態脂解酵素之蛋白含量、酵素活性、脂解酵素回收率對L-維他命C棕櫚酯生成之影響……………………………….…...33 表3.1 微生物生產L-維他命C糖苷的文獻比較…………………..…..35 表4.1 製備麴酸糖苷之文獻比較………………………………….…....60 表4.2 化學誘變劑………………………………………………….…....61

    參考文獻
    Arrigoni O., and Tullio M. C. D., Ascorbic acid: much more than just an antioxidant. Biochimica et Biophysica Acta.2002, 1569:1-9.
    Bae H. K., Lee S. B., and Park C. S., Modification of ascorbic acid using transglycosylation activity of Bacillus stearothermophilus maltogenic amylase to enhance its oxidative stability. Journal of Agricultural and Food Chemistry.2002, 50: 3309-3316.
    Chen C. S., Liu K. J., Lou1 Y. H., and Shieh C. J., Optimisation of kojic acid monolaurate synthesis with lipase PS from Pseudomonas cepacia. Journal of the Science of Food and Agriculture.2002, 82:601-605.
    Chen H. Y., and Yen G. C., Free Radicals, Antioxidant Defenses and Human Health. Nutrition Sciences Journal.1998, 23.(1):105-121.
    Duval C., Keratinocytes control the Pheo/Eumelanin ratio in cultured normal human melanocytes. Pigment of Cell Research. 2002, 15: 440-446.
    Curto E. V., Kwong C., and Hermersdörfer H., Inhibitors of mannalian melanocyte tyrosinase: In vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochemical Pharmacology.1999, 57: 663-672.
    Grüning B., and Hills G., Enzymatic preparation of regioselectivity fatty acid esters of ascorbic acid. United States Patent. 6,150,543.2000.
    Hassan M. A., Ismail F., Yamamoto S., Yamada H. and Nakanishi K., Enzymatic synthesis of Galactosylkojic acid with immobilized β-galactosidase from Bacillus circulans. Bioscience, Biotechnology, and Biochemistry.1995,59 (3):543-545.
    Hedley S. J., Fibroblasts play a regulatory role in the control of pigmentation in reconstructed human skin from types I and II. Pigment of Cell Research. 2002, 15:49-56.
    Hirobe T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment of Cell research.2004, 18:2-12
    Huang S. C., Lin C. C., and Huang M. C., Simultaneous determination of magnesium ascorbyl phosphate, ascorbyl glucoside, kojic acid, arbutin and hydroquinone in skin whitening cosmetics by HPLC. Journal of Food and Drug Analysis.2004, 12: 13-18.
    Kamiya N., Murakami E., Goto M., and Nakashio F., Effect of using a co-solvent in the preparation of surfactant-coated lipases on catalytic activity in organic media. Journal of Fermentation and Bioengineering.1996, 82(1):37-41.
    Kim H., Choi J., Cho J. K., Kim S. Y., and Lee Y. S., Solid-phase synthesis of kojic acid-tripeptides and their tyrosinase inhibitory activity, storage stability and toxicity. Bioorganic & Medicinal Chemistry Letters.2004, 14:2843-2846.
    Kimura Y., Kanatani H., Shima M., Adachi S., and Matsuno R., Anti-oxidant activity of acyl ascorbates in intestinal epithelial cells. Biotechnology Letters.2003, 25:1723-1727.
    Kitao S., and Sekine H., Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides. Bioscience, Biotechnology, and Biochemistry.1994, 58: 419-420.
    Kobayashi T., Adachi S., Nakanishi K., and Matsuno R., Semi-continuous production of lauroyl kojic acid through lipase-catalyzed condensation in acetonitrile. Biochemical Engineering Journal.2001, 9:85-89.
    Kobayashi Y., Kayahara H., Tadasa K., and Tanaka H., Synthesis of n-kojic acid and n-kojic –amino acid-kojiate and their tyrosinase inhibityry activity. Bioorganic & Chemistry Letters.1996, 6 (12):1303-1308.
    Kotani T., Ichimoto I., Tatsumi C., and Fujita T., Bacteriostatic activities and metal chelation of kojic acid analogs. Agriculture and Biological. Chemistry.1976, 40 (4):765-770.
    Kren V., and Thiem J., Glycosylation employing bio-systems: from enzymes to whole cells. Chemical Society Reviews .1997, 26:463-473.
    Kurosu J., Sato T., and Yoshida K., Enzymatic synthesis of α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2002, 93:328-330.
    Kuwabara K., Watanabe Y., Adachi S., Nakanishi K., and Matsuno R., Synthesis of 6-O-unsaturated acyl L-ascorbates by innobilized lipase in acetone in the presence of molecular sieve. Biochemical Engineering Journal.2003, 16: 17-22.
    Lee D. Y., Fibroblasts play a stimulatory role in keratinocyte proliferation but an inhibitory role in melanocyte growth and pigmentation in a skin equivalent system from skin type IV. Archives Dermatological Research. 2003, 294: 444-446.
    Lee D. Y., The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Archives Dermatological Research. 2005, 296: 296-302.
    Lee S. B., Nam K. C., and Lee S. J., Antioxidative effects of glycosyl-ascorbic acids by maltogenic amylase to reduce lipid oxidation and volatiles production in cooked chicken meat. Bioscience, Biotechnology, and Biochemistry.2004, 68: 36-43.
    Lee S. L., and Chen W. C., Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology. Enzyme and Microbial Technology. 1997, 21:436-440.
    Liu K. J., and Shaw J. F., Lipase-catalyzed synthesos of kojic acid esters in organic solvents. Journal of American Oil Chemistry Society.1998, 75(11):1507-1511.
    Lortie R., Enzyme catalyzed esterification. Biotechnology Advances.1997, 15 (1):1-15.
    Luhong T., Hao Z., Shehate M. M., and Yunfei S., A kinetic study of the synthesis of ascorbate fatty acid esters catalyzed by immobilized lipase in organic media. Biotechnology and Applied. Biochemistry.2000, 32: 35-39.
    Maria M. E., Mechanisms of melanogenesis inhibition by tumor necrosis factor-α in B16/F10 mouse melanoma cells. European Journal of Biochemistry. 1998, 255:139-146.
    Maruyama T., Nakajima M., and Seki M., Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. Journal of Bioscience and Bioengineering.2001,92 (3):242-247.
    McCleary B. V., and Gibson, T. S., Purification, properties, and industrial significance of transglucosidase from Aspergillus niger. Carbohydrate Research. 1989, 185:147-162.
    Nakagawa H., Dobashi Y., and Sato T., α-anomer-selective glucosylation of menthol with high yield through a crystal accumulation reaction using lyophilized cells of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 89:138-144.
    Nakagawa H., Dobashi Y., and Ishihara K., Enzymatic synthesis of l-menthyl α-maltoside and l-menthyl α-maltooligoside from l-menthyl α-glucoside by cyclodextrin glucanotransferase. Journal of Bioscience and Bioengineering.2002, 94:119-123.
    Nakajima N., Ishihara K. and Hamada H., Functional glucosylation of kojic acid and daidzein with the Eucalyptus membrane-associated UDP-glucosyltransferase reaction system. Journal of Bioscience and Bioengineering.2001, 92: 469-471.
    Nalajima S., Funahashi H., and Yoshida T. Y., Xanthan gum production in a fermentor with twin impellers. Journal of Bioscience and Bioengineering.1990, 70:392-397.
    Nishimura T., Kometani T., and Takii H., Acceptor sepecificity in glucosylation reaction of Bacillus subtilis X-23 α-amylase towards various phenolic compounds and the structure of kojic acid glucoside. Journal of Bioscience and Bioengineering.1994, 78:37-41.
    Nishimura T., Kometani T., and Takii H., Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. Journal of Bioscience and Bioengineering.1994, 78:31-36.
    Nishimura T., Kometani T., and Takii H., Comparison of some properties of kojic acid glucoside with kojic acid. Nippon Shokuhin Kagaku Kogaku Kaishi.1995, 42: 602-607.
    Park S., Viklund F., Hult K., and Kazlauskas R. J., Ionic liquids create new opportunities for nonaqueous biocatalysis with polar substrates: acylation of glucose and ascorbic acid. American Chemical Society.2003, 225-238.Pleiss J., Fischer M., and Schmid R. D., Anatomy of lipase binding sites: the scissile fatty acid binding site. Chemistry and Physics of Lipids.1998, 93:67-80.
    Raku T., and Tokiwa Y., Regioselective synthesis of kojic acid esters by Bacillus subtilis protease. Biotechnology Letters.2003, 25:969-974.
    Régnier M., Vitamin C affects melanocyte dendricity via keratinocytes. Pigment of Cell Research. 2005, 18:389-390.
    Roomi M. W., House D., Maksic Z. B., and Tsao C. S., Growth suppression of malignant leukemia cell line in vitro by ascoebic acid and its derivatives. Cancer Letters.1998, 122:93-99.
    Rye A. J., Drozd J. W. and Jones C. W., Growth efficiency of Xanthomonas campestris in continuous culture. Journal of General Microbiology.1998, 134: 1055-1061.
    Sanna P. S., Vitamin C enhances differentiation of a contious keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and funtional permeability barrier. Histochemistry of Cell Biology. 2001, 116:287-297.
    Saruno R., Kato F., and Ikeno T., Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agriculture and Biological Chemistry. 1979,43(6):1337-1338.
    Sato T., Nakagawa H., and Kurosu J., α-anomer-selective glucosylation of (+)-catechin by the crude enzyme, showing glucosyl transfer activity, of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2000, 90:625-630.
    Sato T., Nakagawa H., and Kurosu J., Selective α- glucosylation of eugenol by □-glucosyl transfer enzyme of Xanthomonas campestris WU-9701. Journal of Bioscience and Bioengineering.2003, 96 (2):199-202.
    Seiberg M., Keratinocyte-Melanocyte interactions during melanosome transfer. Pigment of Cell Research. 2001, 14:236-242.
    Sharma R., Chisti Y., and Banerjee U. C., Production, purification, characterization and applications of lipases. Biotechnology Advances.2001, 19:627-662.
    Sulaimon S. S., and Kitchell B. E., The biology of melanocytes. Veterinary Dermatology.2003, 14, 57–65
    Takebayashi J., Tai A., and Yamamoto I., Long-term radical scavenging activity of AA-2G and 6-Acyl-AA-2G against 1,1-Diphenyl-2-picrylhydrazyl.Biological&Pharmaceutical Bulletin.2002, 25 (11):1503-1505.
    Touyama R., Inoue K., Takeda Y., Yatsuzuka M., Ikumoto T., Moritome N., Shingu T., Yokoi T., Intuye H., Studies on the Blue Pigments Produced from Genipin and Methylamine. II. ON the Formation Mechanisms of Brownish-Red Intermediates Leading to the Blue Pigment Formation. Chem. Pharm. Bull. 1994, 42, 1571-1578.
    Viklund F., Alander J., and Hulm K., Antioxidative properties and enzymatic synthesis of ascorbyl fatty acid esters. Journal of American Oil Chemistry Society.2003, 80 (8):795-799.
    Villeneuve P., Muderhwa J. M., Graille J., and Haas M. J., Customizing lipases for biocatalysis: a survey of cjemical, physical and molecular biological approaches. Journal of Molecular Catalysis B:Enzymatic. 2000, 9:113-148.
    Watanabe Y., Kuwabara K., Adachi S., Nakanishi K., and Matsuno R., Production of saturated acyl L-ascorbate by immobilized lipase using a continuous stirred tank reactor. Journal of Agricultural and Food Chemistry.2003, 51:4628-4632.
    Wehtje E., Kaur J., Adlercreuttz P., Chand S., and Mattisson B., Water activity control in enzymatic esterification processes. Enzyme and Microbial Technology.1997, 21:502-510.
    Wu X. Y., Jääskeläinen S., and Linko Y.Y., An investigation of crude lipases for hydrolysis, esterification, and transesterification. Enzyme and Microbial Technology.1996, 19:226-231.
    Yamaguchi Y., Mesenchymal-epithelial interactions in the skin: Aiming for site-specific tissue regeneration. Journal of Dermatological Science. 2005, 40:1-9.
    Yamamoto I., Muto N., Murakami K., Suga S., and Yamaguchi H., L-ascorbic acid α-glucoside formed by regioselective transglucosylation with rat intestinal and rice seed α-glucosidases: Its improved stability and structure determination. Chem. Pharm. Bull. 1990, 38(11): 3020-3023.
    Yoshiko T. O., Mitsuru M., Masahiro N., Makiko Y., Namino S. T., and Harukazu F., 2-O-(β-D-glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. Journal of Agricultural and Food Chemistry. 2004, 52:2092-2096.
    呂鋒洲, 抗氧化酵素的介紹.自由基生物學與醫學創刊號. 1993, 1-7.
    賴永沛, 世紀末最後的營養素-多元酚.食品資訊. 1999, 167(18): 49-53.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE