簡易檢索 / 詳目顯示

研究生: 蔡明翰
Ming-Han Tsai
論文名稱: 探討自體免疫傾向之介白素15受器alpha鍵基因剔除小鼠之中心及周邊免疫耐受性
Study of Central and Peripheral Tolerance in the Autoimmune Prone Interleukin-15 Receptor α Chain Gene Knockout mice
指導教授: 廖南詩
Nan-Shih Liao
張子文
Tse-Wen Chang
潘榮隆
Rong-Long Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 47
中文關鍵詞: 介白素15介白素2介白素15受器自體免疫胸線負選擇紅斑狼瘡自體抗體胸線細胞CD4輔助T細胞
外文關鍵詞: Interlerkin-15, Interleukin-2, Interleukin-15R, Autoimmunity, Thymocyte negative selection, Lupus, Autoantibodies, Thymocytes, CD4+ T cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 介白素15號受器(interleukin-15 receptor; IL-15R)是由α、β和γ鍵所組成。其中IL-15受器α鍵本身對IL-15具有高度的親和力,然而β和γ鍵受器則是對IL-15和介白素2號(Interleukin-2; IL-2)皆具有中度的親和力。之前的研究指出在IL-2受器α鍵,IL-2/IL-15受器β鍵,或IL-2之基因剔除之小鼠會產生早期且嚴重性的自體免疫反應,然而,這些症狀卻未曾在IL-15受器α鍵基因缺損之小鼠上發現。我們之前已在IL-15受器α鍵基因剔除,且年齡大於六個月之成年母鼠發現類紅斑性狼瘡症狀,卻不曾發現於野生型的對照組。在這篇論文裡,我證實了IL-15受器α鍵基因剔除的小鼠在胸線及周邊組織表現較差的免疫耐受性。這些結果可能提供了構成成年IL-15受器α鍵基因缺損小鼠產生自體免疫疾病的一些條件,因為其較差的免疫耐受性會造成自體反應的T細胞累積,進而造成自體免疫疾病。


    Interleukin-15 receptor (IL-15R) contains α, β and γ chains. The α chain by itself binds to IL-15 with high affinity, while β and γ chains are intermediate affinity receptors for both Interleukin-2 (IL-2) and IL-15. Previous studies showed that mice deficient of IL-2 receptor α (IL-2Rα), IL-2/15 receptor β (IL-2/15Rβ) or IL-2 developed early progressing severe autoimmune diseases, a phenotype not observed in IL-15Rα knockout (IL-15Rα-/-) mice. We found that the Systemic Lupus Erythematosus (SLE)-like symptoms in female IL-15Rα-/- aged female mice older than 6 months but not in wild type (WT) counterpart. In this thesis, I demonstrated that IL-15Rα-/- mice exhibited inefficient tolerance in the thymus and in the periphery. These results may provide the mechanisms underlying the progressing autoimmune diseases in aged IL-15Rα-/- mice, which is the accumulation of autoimmune T cells resulted from inefficient immune tolerance.

    封面 中文摘要 Abstract 誌謝 Introduction Interleukin-15 (IL-15) IL-15Rα and in trans presentation Role of IL-2 and IL-15 systems in autoimmune diseases Central tolerance and autoimmune diseases Peripheral tolerance and autoimmune diseases Specific aims Materials and Methods Mice Euthanasia of mice Antibodies and Immunostaining procedures Preparation of signal-cell suspensions from lymphoid organs Negative selection models in vivo Dexamethasone sensitivity test in vitro and Fetus thymus organ culture (FTOC) Splenic Antigen presentation cells (APC) purification Negative selection models in vitro FTOC for T cells development and selection In vivo IL-15 treatment in anti-TCRβ induced negative selection Oral tolerance assay Bone marrow transplantation Statistical Analysis and Graphs Medium Results Inefficient negative selection of thymocytes in IL-15Rα-/- mice in vivo 1. Anti-TCR mAb-induced thymocyte deletion 2. Thymocytes or thymus organs of WT and IL-15Rα-/- mice had similar sensitivity to DEX 3. Endogenous superantigen-induced negative selection 4. HY TCR+ transgenic (HY) mice model Negative selection of thymocytes in vitro 1. Negative selection of thymocytes by anti-TCR mAb immobilized to plate or APC 2. Negative selection of thymocytes by anti-TCR mAb in FTOC IL-15 augmented anti-TCR induced thymocytes deletion in IL-15Rα bearing environment 1. Exogenous IL-15 can not increase the thymocytes deletion by anti-TCR mAb immobilized to plate 2. Exogenous IL-15 upgraded anti-TCR mAb-induced thymocyte deletion when cultured together with IL-15Rα-expressing splenic APC and FTOC Reduction of DX5-TCR-CD122+ thymocytes in IL-15Rα-/- mice IL-15 enhanced anti-TCRβ mAb-induced negative selection in vivo Insufficient peripheral tolerance mechanism in IL-15Rα-/- mice Discussions Discussion of experimental models for studying negative selection in vivo The inefficient negative selection in IL-15Rα-/- mice in unmanipulated mice Why can not inefficient negative selection in IL-15Rα-/- thymocytes be demonstrated in vitro? How IL-15 system parcitipated in negative selection in vivo How IL-15 modulated negative selection in thymocytes? Inefficient peripheral tolerance in IL-15Rα-/- mice provides more chance to autoimmunity Why the lupus-like autoimmunity only developed in IL-15Rα-/- female mice? Summary Figures FIGURE 1. Anti-TCRβ-mediated thymocyte deletion in vivo FIGURE 2. Anti-CD3ε mAb-mediated thymocyte deletion in vivo FIGURE 3. DEX mediated thymocyte deletion in isolated thymocytes and thymus organs FIGURE 4. IL-15Rα-/- mice had more Vβ5+ thymocytes than WT mice in the intermediate affinity I-Ab background FIGURE 5. Negative selection occurred normally in the IL-15Rα-/- HY mice FIGURE 6. Studies of the anti-TCR inducing thymocyte deletion between WT and IL-15Rα-/- thymocytes in vitro FIGURE 7. WT and IL-15Rα-/- FTOC showed similar in TCR mediated thymocyte deletion FIGURE 8. Exogenous IL-15 or IL-2 can not upgrade the TCR mediated-thymocytes deletion of isolated thymocytes FIGURE 9. Exogenous IL-15 augmented thymocytes deletion cytokine in the presence of splenic APC culture and in FTOC FIGURE 10. IL-15Rα-/- mice had less DX5-gdTCR-CD122+ thymocytes FIGURE 11. Exogenous IL-15 injection enhanced anti-TCR□ induced thymocyte deletion in vivo FIGURE 12. Inefficient oral tolerance in IL-15Rα-/- mice References Supplementary Data Supplementary Data A. Using bone marrow chimera mice to study the cell roles in anti-TCRβ mAb-induced negative selection

    1. Alpdogan, O., and M.R. van den Brink. 2005. IL-7 and IL-15: therapeutic cytokines for immunodeficiency. Trends Immunol 26:56-64.
    2. Fehniger, T.A., and M.A. Caligiuri. 2001. Interleukin 15: biology and relevance to human disease. Blood 97:14-32.
    3. Kovanen, P.E., and W.J. Leonard. 2004. Cytokines and immunodeficiency diseases: critical roles of the gamma(c)-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol Rev 202:67-83.
    4. Grabstein, K.H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M.A. Schoenborn, M. Ahdieh, and et al. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965-968.
    5. Giri, J.G., S. Kumaki, M. Ahdieh, D.J. Friend, A. Loomis, K. Shanebeck, R. DuBose, D. Cosman, L.S. Park, and D.M. Anderson. 1995. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. Embo J 14:3654-3663.
    6. Anderson, D.M., S. Kumaki, M. Ahdieh, J. Bertles, M. Tometsko, A. Loomis, J. Giri, N.G. Copeland, D.J. Gilbert, and N.A. Jenkins. 1995. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 270:29862-29869.
    7. Ruckert R, A.K., and Seifert M. 2000. Inhibition of keratinocyte apoptosis by IL-15: a new parameter in the pathogenesis of psoriasis? J Immunol 165:2240-2250.
    8. Dubois, S., Magrangeas, F., and Lehours, P. 1999. Natural splicing of exon 2 of human interleukin-15 receptor alpha-chain mRNA results in a shortened form with a distinct pattern of expression. J Biol Chem. 274:26978-26984.
    9. Ku, C.C., M. Murakami, A. Sakamoto, J. Kappler, and P. Marrack. 2000. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288:675.
    10. Waldmann, T.A., S. Dubois, and Y. Tagaya. 2001. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 14:105-110.
    11. Lodolce, J.P., D.L. Boone, S. Chai, R.E. Swain, T. Dassopoulos, S. Trettin, and A. Ma. 1998. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669-676.
    12. Bulfone-Paus, S., D. Ungureanu, T. Pohl, G. Lindner, R. Paus, R. Ruckert, H. Krause, U. Kunzendorf. 1997. Interleukin-15 protects from lethal apoptosis in vivo. Nat. Med 3:1097-1124.
    13. Suzuki, H., G.S. Duncan, H. Takimoto, and T.W. Mak. 1997. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor beta chain. J Exp Med 185:499-505.
    14. Kennedy, M.K., M. Glaccum, S.N. Brown, E.A. Butz, J.L. Viney, M. Embers, N. Matsuki, K. Charrier, L. Sedger, C.R. Willis, K. Brasel, P.J. Morrissey, K. Stocking, J.C. Schuh, S. Joyce, and J.J. Peschon. 2000. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771-780.
    15. Chae, D.W., Y. Nosaka, T.B. Strom, and W. Maslinski. 1996. Distribution of IL-15 receptor alpha-chains on human peripheral blood mononuclear cells and effect of immunosuppressive drugs on receptor expression. J Immunol 157:2813-2819.
    16. Dubois, S., J. Mariner, T.A. Waldmann, and Y. Tagaya. 2002. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17:537-547.
    17. Burkett, P.R., R. Koka, M. Chien, S. Chai, F. Chan, A. Ma, and D.L. Boone. 2003. IL-15R alpha expression on CD8+ T cells is dispensable for T cell memory. Proc Natl Acad Sci U S A 100:4724-4729.
    18. Schluns, K.S., E.C. Nowak, A. Cabrera-Hernandez, L. Puddington, L. Lefrancois, and H.L. Aguila. 2004. Distinct cell types control lymphoid subset development by means of IL-15 and IL-15 receptor alpha expression. Proc Natl Acad Sci U S A 101:5616-5621.
    19. Willerford, D.M., J. Chen, J.A. Ferry, L. Davidson, A. Ma, and F.W. Alt. 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3:521-530.
    20. Suzuki, H., T.M. Kundig, C. Furlonger, A. Wakeham, E. Timms, T. Matsuyama, R. Schmits, J.J. Simard, P.S. Ohashi, and H. Griesser. 1995. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268:1472-1476.
    21. Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345-352.
    22. Belkaid, Y., and B.T. Rouse. 2005. Natural regulatory T cells in infectious disease. Nat Immunol 6:353-360.
    23. Schwartz, R.H. 2005. Natural regulatory T cells and self-tolerance. Nat Immunol 6:327-330.
    24. D'Cruz, L.M., and L. Klein. 2005. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152-1159.
    25. Nelson, B.H. 2004. IL-2, regulatory T cells, and tolerance. J Immunol 172:3983-3988.
    26. Malek, T.R., B.O. Porter, E.K. Codias, P. Scibelli, and A. Yu. 2000. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J Immunol 164:2905-2914.
    27. Malek, T.R., A. Yu, V. Vincek, P. Scibelli, and L. Kong. 2002. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17:167-178.
    28. Rao, S., J.M. Olson, K.L. Moser, C. Gray-McGuire, G.R. Bruner, J. Kelly, and J.B. Harley. 2001. Linkage analysis of human systemic lupus erythematosus-related traits: a principal component approach. Arthritis Rheum 44:2807-2818.
    29. Tsao, B.P. 2003. The genetics of human systemic lupus erythematosus. Trends Immunol 24:595-602.
    30. Waldmann, T.A. 2004. Targeting the interleukin-15/interleukin-15 receptor system in inflammatory autoimmune diseases. Arthritis Res Ther 6:174-177.
    31. Petrovic-Rackov, L., and N. Pejnovic. 2005. Clinical significance of IL-18, IL-15, IL-12 and TNF-alpha measurement in rheumatoid arthritis. Clin Rheumatol 1-5.
    32. Starr, T.K., S.C. Jameson, and K.A. Hogquist. 2003. Positive and negative selection of T cells. Annu Rev Immunol 21:139-176.
    33. Ohashi, P.S. 2003. Negative selection and autoimmunity. Curr Opin Immunol 15:668-676.
    34. Palmer E. 2003. Negative selection--clearing out the bad apples from the T-cell repertoire. Nat Rev Immunol. 3:383-391.
    35. Teshima T, R.P., Liu C, Williams D, Cooke KR, Ferrara JL. 2003. Impaired thymic negative selection causes autoimmune graft-versus-host disease. Blood 102:429-435.
    36. Kwon H, J.H., Yang Y, Mora C, Mariathasan S, Ohashi PS, Flavell RA, and Yoon JW. 2005. Development of autoreactive diabetogenic T cells in the thymus of NOD mice. J Autoimmun. 24:11-23.
    37. Kishimoto H, S.J. 2003. A defect in central tolerance in NOD mice. Nat Immunol. 4:717-718.
    38. Aoki CA, B.A., Ridgway WM, Keen CL, Ansari AA, and Gershwin ME. 2005. NOD mice and autoimmunity. Autoimmun Rev. 4:373-379.
    39. Fatenejad S, P.S., Disorbo O, and Craft J. 1998. Central T cell tolerance in lupus-prone mice: influence of autoimmune background
    and the lpr mutation. J Immunol. 161:6427-6432.
    40. Li, G., H.S. Lillehoj, and W. Min. 2001. Production and characterization of monoclonal antibodies reactive with the chicken interleukin-15 receptor alpha chain. Vet Immunol Immunopathol 82:215-227.
    41. Zhao, H., H. Nguyen, and J. Kang. 2005. Interleukin 15 controls the generation of the restricted T cell receptor repertoire of gamma delta intestinal intraepithelial lymphocytes. Nat Immunol 6:1263-1271.
    42. Walker, L.S., and A.K. Abbas. 2002. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11-19.
    43. Ridgway, W.M., H.L. Weiner, and C.G. Fathman. 1994. Regulation of autoimmune response. Curr Opin Immunol 6:946-955.
    44. Weiner, H.L. 1994. Oral Tolerance. Annu Rev Immunol 12:809-837
    45. Mayer, L., and L. Shao. 2004. Therapeutic potential of oral tolerance. Nat Rev Immunol 4:407-419.
    46. Weiner, H.L. 1993. Treatment of autoimmune diseases by oral tolerance to autoantigens. Autoimmunity 15 Suppl:6-7.
    47. Wu, T.S., J.M. Lee, Y.G. Lai, J.C. Hsu, C.Y. Tsai, Y.H. Lee, and N.S. Liao. 2002. Reduced expression of Bcl-2 in CD8+ T cells deficient in the IL-15 receptor alpha-chain. J Immunol 168:705-712.
    48. Brewer, J.A., O. Kanagawa, B.P. Sleckman, and L.J. Muglia. 2002. Thymocyte apoptosis induced by T cell activation is mediated by glucocorticoids in vivo. J Immunol 169:1837-1843.
    49. Page, D.M., E.M. Roberts, J.J. Peschon, and S.M. Hedrick. 1998. TNF receptor-deficient mice reveal striking differences between several models of thymocyte negative selection. J Immunol 160:120-133.
    50. Bouillet P, P.J., Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A. 2002. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415:922-926.
    51. Kisielow, P., H.S. Teh, H. Bluthmann, and H. von Boehmer. 1988. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335:730-733.
    52. Teh, H.S., H. Kishi, B. Scott, P. Borgulya, H. von Boehmer, and P. Kisielow. 1990. Early deletion and late positive selection of T cells expressing a male-specific receptor in T-cell receptor transgenic mice. Dev Immunol 1:1-10.
    53. Hanke, T., R. Mitnacht, R. Boyd, and T. Hunig. 1994. Induction of interleukin 2 receptor beta chain expression by self-recognition in the thymus. J Exp Med 180:1629-1636.
    54. Bassiri, H., and S.R. Carding. 2001. A requirement for IL-2/IL-2 receptor signaling in intrathymic negative selection. J Immunol 166:5945-5954.
    55. Suzuki, H., A. Hayakawa, D. Bouchard, I. Nakashima, and T.W. Mak. 1997. Normal thymic selection, superantigen-induced deletion and Fas-mediated apoptosis of T cells in IL-2 receptor beta chain-deficient mice. Int Immunol 9:1367-1374.
    56. Mora, A.L., S. Stanley, W. Armistead, A.C. Chan, and M. Boothby. 2001. Inefficient ZAP-70 phosphorylation and decreased thymic selection in vivo result from inhibition of NF-kappaB/Rel. J Immunol 167:5628-5635.
    57. Shores, E.W., T. Tran, A. Grinberg, C.L. Sommers, H. Shen, and P.E. Love. 1997. Role of the multiple T cell receptor (TCR)-zeta chain signaling motifs in selection of the T cell repertoire. J Exp Med 185:893-900.
    58. Sommers, C.L., J. Lee, K.L. Steiner, J.M. Gurson, C.L. Depersis, D. El-Khoury, C.L. Fuller, E.W. Shores, P.E. Love, and L.E. Samelson. 2005. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med 201:1125-1134.
    59. Sugawara, T., T. Moriguchi, E. Nishida, and Y. Takahama. 1998. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 9:565-574.
    60. Mariathasan, S., S.S. Ho, A. Zakarian, and P.S. Ohashi. 2000. Degree of ERK activation influences both positive and negative thymocyte selection. Eur J Immunol 30:1060-1068.
    61. Rincon, M., A. Whitmarsh, D.D. Yang, L. Weiss, B. Derijard, P. Jayaraj, R.J. Davis, and R.A. Flavell. 1998. The JNK pathway regulates the In vivo deletion of immature CD4(+)CD8(+) thymocytes. J Exp Med 188:1817-1830.
    62. Nekrasova, T., C. Shive, Y. Gao, K. Kawamura, R. Guardia, G. Landreth, and T.G. Forsthuber. 2005. ERK1-deficient mice show normal T cell effector function and are highly susceptible to experimental autoimmune encephalomyelitis. J Immunol 175:2374-2380.
    63. Page, D.M. 1999. Cutting edge: thymic selection and autoreactivity are regulated by multiple coreceptors involved in T cell activation. J Immunol 163:3577-3581.
    64. Bouzahzah, F., S. Jung, and J. Craft. 2003. CD4+ T cells from lupus-prone mice avoid antigen-specific tolerance induction in vivo. J Immunol 170:741-748.
    65. Zielinski, C.E., S.N. Jacob, F. Bouzahzah, B.E. Ehrlich, and J. Craft. 2005. Naive CD4+ T cells from lupus-prone Fas-intact MRL mice display TCR-mediated hyperproliferation due to intrinsic threshold defects in activation. J Immunol 174:5100-5109.
    66. Arreaza, G., K. Salojin, W. Yang, J. Zhang, B. Gill, Q.S. Mi, J.X. Gao, C. Meagher, M. Cameron, and T.L. Delovitch. 2003. Deficient activation and resistance to activation-induced apoptosis of CD8+ T cells is associated with defective peripheral tolerance in nonobese diabetic mice. Clin Immunol 107:103-115.
    67. Kosiewicz, M.M., D. Nebane-Ambe, P. Alard, J.N. Manirarora, and S. Parnell. 2006. Androgen-mediated increases in CD4+CD25+CD103+ cell percentages and function correlate with resistance to autoimmune disease. In 2006 Annual meeting of AAI poster (unpublished).
    68. Pelfrey, C.M., I.R. Moldoven, A.C. Cotleur, N. Zamor, J.-C. Lee, H.S. Bagga, and R.A. Rudick. 2006. Sex hormones play a significant role in autoimmune responses to myelin in multiple sclerosis. 2006 Annual meeting of AAI poster (unpublished)
    69. Cutolo, M., A. Sulli, and B. Seriolo. 2005. Estrogens, autoimmunity and the heart. Lupus 14:675-678.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE