研究生: |
林志儒 Lin, Chih-Ju |
---|---|
論文名稱: |
十六奈米鰭式電晶體閘堆疊之沉積與退火製程影響研究 Deposition and Annealing Processes of Gate Stacks on 16 nm FinFETs |
指導教授: |
張廖貴術
ChangLiao, Kuei-Shu |
口試委員: |
趙天生
Chao,Tien-Sheng 謝嘉民 Shieh, Jia-Min |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 閘極工程 、氧化鉿 、金屬閘極 、沉積後退火 |
外文關鍵詞: | gate stack engineering, HfO2, metal gate, PDA |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以改善16 nm鰭式電晶體均勻性與電性表現為主軸,主要調變閘極堆疊的沉積溫度與退火製程,並對電晶體做電性的分析與討論。研究成果可分為三部分如下。
第一部分,high-k沉積後退火處理之升溫條件對電晶體的影響。利用high-k沉積後的快速升降溫退火(Post Metal Annealing, PMA與Post Cap Annealing, PCA)調變來促進HfO2結成tetragonal或cubic晶相,進而提升電晶體的電容值與導通電流。對於sample在high-k沉積後只做PCA而言,相較於標準樣品,NFET與PFET的導通電流分別有3.55%與27.7%的提升、電容分別有21.17%與19.13%的提升。然而閘極電流增加超過一個order,此問題可再加上PMA製程來解決。
第二部分,金屬閘極之沉積溫度對電晶體均勻性的影響。藉由降低金屬閘極的沉積溫度,使晶粒變小,總晶粒數變多進而抑制Work Function Variation(WFV),達到更佳的臨界電壓均勻。對於樣品沉積溫度300 °C而言,相較於沉積溫度380 °C,NFET與PFET的Vth標準差分別有35.27%與38.17%的顯著改善,同時漏電流也有35.70%與38.19%的下降。
第三部分,循環式沉積退火閘極氧化層對電晶體均勻性之影響。藉由循環式沉積退火的方式來成長閘極氧化層,減少隨機長晶的現象,進而提升電晶體Vth的均勻性。實驗結果發現,sample只做Post Deposition Annealing(PDA)有最小的Vth標準差,而sample做沉積-退火-沉積-退火(DADA)則稍微大一點。但對於sample DADA,相較於標準樣品,NFET與PFET之Vth標準差仍有27.62%與32.52%的改善。其不及sample PDA的原因為8 Å的厚度無法使high-k介電層均勻且有效地結晶。
The purpose of this thesis is to improve the uniformity and electrical properties of 16 nm FinFET by tuning the deposition temperatures and annealing conditions for gate stack. The experimental results consist of three parts as follows.
The first part is about effects of annealing temperature profile after high-k deposition on FinFET. The temperature spiking profile of annealing was applied to achieve a higher-k gate dielectric with more formation of tetragonal or cubic crystalline phase, which contributes to a higher drive current and capacitance. In comparison with the standard sample, the drive current of sample with only PCA increase 3.55% and 27.7% for NFET and PFET, respectively. The capacitance values of NFET and PFET also increase 21.17% and 19.13%, respectively. However, the gate current of sample with PCA increases more than one order, which can be resolved by an additional PMA process.
The second part is about effects of deposition temperature of metal gate on Vth uniformity of FinFET. A lower deposition temperature of metal gate was applied to decrease the grain size and increase the total number of grains, which lowers work function variation(WFV) and achieves better Vth uniformity. As compared to the sample with deposition temperature at 380 °C, Vth variance of sample with deposititon temperature at 300 °C significantly improve 35.27% and 38.17%; meanwhile, off currents also decrease with 35.70% and 38.19% for NFET and PFET, respectively.
The third part is about effects of cyclical deposition and annealing of gate dielectric on Vth uniformity of FinFET. Random grain crystallization can be reduced by forming gate dielectric with cyclical deposition and annealing, which achives better uniformity of Vth. Results show that the Vth variance of sample with post deposition annealing(PDA) is the smallest and that with Dep-Anneal-Dep-Anneal(DADA) is a little larger. However, in comparison with standard sample, the Vth variance of sample with DADA still can be reduced with 27.62% and 32.52% for NFET and PFET, respectively. The reason why the Vth variance of sample with DADA is larger than that with PDA may be because a 0.8 nm thick high-k dielectric cannot be uniformly and effectively crystalized.
[1] J. R. Brews, W. Fichtner, E. H. Nicollian, and S. M. Sze, “Generalized Guide for MOSFET Miniaturization,” IEEE Electron Device Lett., vol. 1, no. 1, pp. 2–4, 1980.
[2] H. Kawaguchi et al., “A Robust 0.15μm CMOS Technology with CoSi2 Salicide and Shallow Trench Isolation,” in Symposium on VLSI Technology, vol. 445, no. 1988, pp. 125–126, 1997.
[3] K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proc. IEEE, vol. 91, no. 2, pp. 305–327, 2003.
[4] E. Takeda, Y. Nakagome, H. Kume, and S. Asai, “New Hot-Carrier Injection and Device Degradation in Submicron MOSFETs,” IEE Proc. I Solid State Electron Devices, vol. 130, no. 3, p. 144, 1983.
[5] S. Y. Wu, C. Y. Lin, S. H. Yang, J. J. Liaw, and J. Y. Cheng, “Advancing Foundry Technology with Scaling and Innovations,” Proc. Tech. Progr. - 2014 Int. Symp. VLSI Technol. Syst. Appl. VLSI-TSA 2014, pp. 14–16, 2014.
[6] K. F. Schuegraf and C. Hu, “Reliability of Thin SiO2,” Semicond. Sci. Technol., vol. 9, no. 5, pp. 989–1004, 1994.
[7] D. Hisamoto et al., “FinFET-A Self-Aligned Double-Gate MOSFET Scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320–2325, 2000.
[8] S. Y. Wu et al., “A 16nm FinFET CMOS Technology for Mobile SoC and Computing Applications,” Tech. Dig. - Int. Electron Devices Meet. IEDM, pp. 224–227, 2013.
[9] Y.-C. Yeo, “Metal Gate Technology for Nanoscale Transistors—Material Selection and Process Integration Issues,” Thin Solid Films, vol. 462–463, pp. 34–41, 2004.
[10] S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, “A Group IV Solution for 7nm FinFET CMOS : Stress Engineering Using Si , Ge and Sn,” IEDM2013, pp. 6–8, 2013.
[11] J. Kedzierski et al., “Extension and Source/Drain Design for High-Performance FinFET Devices,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952–958, 2003.
[12] L. Å. Ragnarsson et al., “Ultra Low-EOT (5 Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization,” Tech. Dig. - Int. Electron Devices Meet. IEDM, no. c, pp. 663–666, 2009.
[13] M. Dai et al., “A Novel Atomic Layer Oxidation Technique for EOT Scaling in Gate-Last High-k/Metal Gate CMOS Technology,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 2, pp. 650–653, 2011.
[14] G. Brezeanu, M. Brezeanu, and F. Bernea, “High-k Dielectrics in Nanoµelectronics,” Romnet.Net.
[15] J. R.Watling et al., “Impact of High-k Gate Stacks on Transport and Variability in Nano-CMOS Devices,” J. Comput. Theor. Nanosci., vol. 5, no. 6, pp. 1072–1088, 2008.
[16] R. D. Clark et al., “Physical and Electrical Effects of the Dep-Anneal-Dep-Anneal (DADA) Process for HfO2 in High K/Metal Gate Stacks,” E. C. S. Transactions and T. E. Society Most, vol. 35, no. 4, pp. 815–834, 2011.
[17] T. Matsukawa et al., “Comprehensive Analysis of Variability Sources of FinFET Characteristics,” VLSI Technol. 2009 Symp., pp. 118–119, 2009.
[18] K. Endo et al., “Variability Analysis of TiN Metal-Gate FinFETs,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 546–548, 2010.
[19] T. Matsukawa et al., “Suppressed Variability of Current-onset Voltage of FinFETs by Improvement of Work Function Uniformity of Metal Gates,” 2013 Int. Symp. VLSI Technol. Syst. Appl. VLSI-TSA 2013, vol. 2197, no. 2011, pp. 2011–2012, 2013.
[20] T. Matsukawa et al., “Fluctuation in Drain Induced Barrier Lowering (DIBL) for FinFETs Caused by Granular Work Function Variation of Metal Gates,” Proc. Tech. Progr. - 2014 Int. Symp. VLSI Technol. Syst. Appl. VLSI-TSA 2014, vol. 3055, no. 2009, pp. 9–10, 2014.
[21] H. Dadgour, K. Endo, D. Vivek, and K. Banerjee, “Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for sram reliability,” Tech. Dig. - Int. Electron Devices Meet. IEDM, vol. 3, pp. 5–8, 2008.
[22] J. H. Choi, Y. Mao, and J. P. Chang, “Development of hafnium based high-k materials - A review,” Mater. Sci. Eng. R Reports, vol. 72, no. 6, pp. 97–136, 2011.
[23] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Phys. Rev. B, vol. 65, no. 23, pp. 75105-1–10, 2002.
[24] A. Toriumi, K. Kita, K. Tomida, and Y. Yamamoto, “DOPED HfO2 FOR HIGHER-k DIELECTRICS,” ECS Trans., vol. 1, no. 5, pp. 185–197, 2006.
[25] S. Govindarajan et al., “Higher permittivity rare earth doped HfO[sub 2] for sub-45-nm metal-insulator-semiconductor devices,” Appl. Phys. Lett., vol. 91, no. 6, p. 062906/1–062906/3, 2007.
[26] C. Adelmann, V. Sriramkumar, S. VanElshocht, P. Lehnen, T. Conard, and S. DeGendt, “Dielectric properties of dysprosium- and scandium-doped hafnium dioxide thin films,” Appl. Phys. Lett., vol. 91, no. 16, 2007.
[27] B. Luo, D. Yu, B. E. Kucera, S. A. Campbell, and W. L. Gladfelter, “Synthesis and structures of bis(2-dimethylaminoethyl)amine adducts of strontium bis(2,2,6,6-tetramethylheptane-3,5-dionate) and their use in the CVD of cubic strontium-doped hafnium dioxides,” Chem. Vap. Depos., vol. 13, no. 8, pp. 381–388, 2007.
[28] F. Ducroquet et al, “Dielectric Properties and Flat-Band Voltages on Doped-HfO 2 Thin Films,” E. C. S. Transactions and T. E. Society vol. 28, no. 2, pp. 191–202, 2010.
[29] S. Migita et al., “Design and demonstration of very high-k (k~50) HfO2 for ultra-scaled Si CMOS,” Dig. Tech. Pap. - Symp. VLSI Technol., pp. 152–153, 2008.
[30] S. Gupta, V. Moroz, L. Smith, Q. Lu, and K. C. Saraswat, “A Group IV Solution for 7nm FinFET CMOS : Stress Engineering Using Si , Ge and Sn,” IEDM2013, pp. 6–8, 2013.
[31] Yasuhiro Nakajima et al, “Experimental Demonstration of Higher-k Phase HfO2 through Non-equilibrium Thermal Treatment,” E. C. S. Transactions and T. E. Society vol. 28, no. 2, pp. 203–212, 2010.
[32] Y. Morita, S. Migita, W. Mizubayashi, and H. Ota, “Fabrication of direct-contact higher-k HfO2 gate stacks by oxygen-controlled cap post-deposition annealing,” Jpn. J. Appl. Phys., vol. 50, no. 10 PART 2, 2011.
[33] Y. Morita, S. Migita, W. Mizubayashi, M. Masahara, and H. Ota, “Two-step annealing effects on ultrathin EOT higher-k (k = 40) ALD-HfO2 gate stacks,” Solid. State. Electron., vol. 84, pp. 58–64, 2013.
[34] T. Nabatame, A. Toriumi, Y. Watanabe, H. Ota, S. Migita, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, “Achievement of Higher-k and High-Φ in Phase Controlled HfO2 Film using Post Gate-Electrode-Deposition Annealing,” ECS Trans., vol. 11, no. 4, pp. 35–45, 2007.
[35] Y. Morita, S. Migita, W. Mizubayashi, and H. Ota, “Extremely scaled (~0.2 nm) equivalent oxide thickness of higher-k (k = 40) HfO2 gate stacks prepared by atomic layer deposition and oxygen-controlled cap post-deposition annealing,” Jpn. J. Appl. Phys., vol. 51, no. 2 PART 2, 2012.
[36] S. Migita, Y. Watanabe, H. Ota, T. Nabatame, A. Toriumi, “Structural Metastability and Size Scalability of Phase-Controlled HfO2 Formed through Cap-PDA,” E. C. S. Transactions and T. E. Society vol. 19, no. 2, pp. 563–575, 2009.
[37] C. C. Li et al., “Improved electrical characteristics high-k gated MOS devices with in-situ remote plasma treatment in atomic layer deposition,” Microelectron. Eng., vol. 109, pp. 64–67, 2013.
[38] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors-Part I: Modeling, Analysis, and Experimental Validation,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2504–2514, 2010.
[39] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors-Part II: Implications for Process, Device, and Circuit Design,” IEEE Trans. Electron Devices, vol. 57, no. 10, pp. 2515–2525, Oct.2010.
[40] K. Choi et al., “The effect of metal thickness, overlayer and high-k surface treatment on the effective work function of metal electrode,” Proc. ESSDERC 2005 35th Eur. Solid-State Device Res. Conf., vol. 2005, no. I, pp. 101–104, 2005.
[41] A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films, vol. 311, no. 1–2, pp. 93–100, 1997.
[42] C. H. Ahn, S. G. Cho, H. J. Lee, K. H. Park, and S. H. Jeong, “Characteristics of TiN Thin Films Grown by ALD Using TiCl4 and NH3,” Met. Mater. Int., vol. 7, no. 6, pp. 621–625, 2001.
[43] J. Kim, H. Hong, S. Ghosh, K.-Y. Oh, and C. Lee, “Physical Properties of Highly Conformal TiN Thin films Grown by Atomic Layer Deposition,” Jpn. J. Appl. Phys., vol. 42, no. Part 1, No. 3, pp. 1375–1379, 2003.
[44] J. Kim, H. Hong, K. Oh, and C. Lee, “Properties including step coverage of TiN thin films prepared by atomic layer deposition,” Appl. Surf. Sci., vol. 210, no. 3–4, pp. 231–239, 2003.
[45] K.-E. Elers, J. Winkler, K. Weeks, and S. Marcus, “TiCl4 as a Precursor in the TiN Deposition by ALD and PEALD,” J. Electrochem. Soc., vol. 152, no. 8, p. G589, 2005.
[46] K. Choi et al., “Growth mechanism of TiN film on dielectric films and the effects on the work function,” Thin Solid Films, vol. 486, no. 1–2, pp. 141–144, 2005.
[47] C. C. Yeo et al., “Improvement of Electrical Properties of MOCVD HfO[sub 2] by Multistep Deposition,” Electrochem. Solid-State Lett., vol. 6, no. 11, p. F42, 2003.
[48] H. Jagannathan et al., “Methodology of ALD HfO2 High-κ gate dielectric optimization by cyclic depositions and anneals,” ECS Trans., vol. 33, no. 3, pp. 157–164, 2010.
[49] Y.-L. Cheng, C.-Y. Hsieh, T.-C. Bo, and J.-R. Lin, “Physical, Electrical, and Reliability Characteristics of Multi-Step Deposition-Annealed HfO2 Film,” ECS J. Solid State Sci. Technol., vol. 3, no. 4, pp. P55–P59, 2014.
[50] K. S. Yew, D. S. Ang, L. J. Tang, K. Cui, G. Bersuker, and P. S. Lysaght, “Scanning Tunneling Microscopy Study of the Multi-Step Deposited and Annealed HfSiOx Gate Dielectric,” J. Electrochem. Soc., vol. 158, no. 10, p. H1021, 2011.
[51] S. Consiglio, “Structural Characteristics of Electrically Scaled ALD HfO 2 from Cyclical Deposition and Annealing Scheme,” E. C. S. Transactions and T. E.Society vol. 41, no. 2, pp. 89–108, 2011.