研究生: |
羅彥博 Luo, Yen Po |
---|---|
論文名稱: |
上半平面的規範化解析延拓 A Regularized Analytic Extension on the Upper Half Plane |
指導教授: |
王偉成
Wang, Wei Cheng |
口試委員: |
黃聰明
Huang, Tsung Ming 朱家杰 Chu, Chia Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 解析延拓 |
外文關鍵詞: | regularized analytic extension |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在電磁學中,我們以 D=ε_0 E 來表示電場和電位移的關係,ε_0 為電容率。 而電極化率和相對電容率有 χ=ε_r-1 的關係。 電極化率本身滿足 KK 關係式,且可以從波方程中得到對應折射率以及衰退係數的關係 χ=〖(n+iq)〗^2。 在真實生活中,我們只能在有限的範圍下測量以及得知n及q的資料,因此我們利用電極化率會滿足KK關係式的條件,以及假設電極化率在可測量資料的範圍外部會有光滑的行為,使用規範化的方法對 χ 在無法測量的範圍延拓。然而金屬導體的電極化率在0點有瑕點 χ,要先去除奇異的部分才能夠使 χ 滿足KK關係式。 在第1節中,我們會討論如何處理瑕點的細節。
In electromagnetism, the electric displacement field D represents how an electric field E affects in a given medium. The actual permittivity ε is calculated by =ε_r ε_0=(1+χ)ε_0 , where χ is the electric susceptibility of given material. The electric susceptibility χ satisfies the Kramers-Krönig relation. From the wave equation, electric susceptibility χ , the refractive index n and attenuation coefficient q have the relation χ=〖(n+iq)〗^2. However we can only measure n and q within a finite bandwidth. In this paper, we will find out a subset of the kernel of the Kramer-Krönig relation, and then use a minimization with a regularized extension to recover χ outside the measured bandwidth. We will recover the data of silicon and silver. For silver, we observe the singularity of its data χ_s and apply the KK-relation on χ-χ_(s ). For the singularity of conductors, we put the detail in the section 1.3.
[1] Kendall R. Waters, Joe Mobley, and James G. Mill Causality-imposed(Kramers-Kronig) relationships
between attenuation and dispersion, IEEE T ULTRASON FERR,(2005) v.52 pp. 822-833
[2] Kendall R. Waters, Joe Mobley, and James G. Mill, Finite-bandwidth effects on the causal prediction of
ultrasonic attenuation of the power law form J. Acoust. Soc. Am., 4 (2003), pp. 2782-2790
[3] Vu Kim Tuan, Stable recovery of analytic functions using basic hypergeometric series J. Comput. Anal.
Appl. 3(2001), no. 1, p. 33-52.
[4] Edward D. Palik, Handbook of Optical Constants of Solids, ACADEMIC PRESS (1997)
[5] Rainer Kress Linear Integral Equations Appl. Math. Sci. (1989) v. 82 Springer-Verlag
[6] Mark Fox Optical Properties of Solids (2010) Oxford University Press