簡易檢索 / 詳目顯示

研究生: 張立偉
Chang, Li-Wei
論文名稱: 低維度氧氮化合物奈米晶體在合成、結構及其光電特性設計與應用之研究
Design and Performance Studies of Fabrication, Structure, and Optoelectronic Characteristics in Low Dimensional Oxide/Nitride Nanocrystals
指導教授: 施漢章
Shih, Han C.
葉均蔚
Yeh, Jien-Wei
口試委員: 林景崎
Lin, Jing-Chie
張立
Li, Chang
黃肇瑞
Jow-Lay Huang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 207
中文關鍵詞: 氧化鎵氧化鋅奈米晶體奈米線光電特性
外文關鍵詞: Ga2O3, ZnO, Nanocrystals, Nanowires, Optoelectronic Characteristics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是使用熱化學氣相沉積系統合成出低維度氧氮化物奈米晶體,並在奈米晶體中摻雜不同元素,如:鎵、鈦、氮等原子,成功合成出四種在光電特性上獨特之奈米結構材料。製程內容涵蓋:兩階段共蒸鍍法合成出之摻雜鎵氧化鋅奈米線(Ga-doped ZnO); 利用金屬蒸氣真空電弧系統(MEVVA)植入鈦之氧化鋅奈米線(Ti-doped ZnO); 並藉由微波電漿增強化學氣相沉積系統(MPECVD)所產生之氮電漿和氮氣混入法進行摻雜氮之氧化鎵奈米線(N-doped ß-Ga2O3),以及控制氨氣(NH3)開關頻率(十分鐘/次)所合成出之鋸齒型氧氮化鎵奈米線(Zigzag Ga2O3/GaN)。接著進一步探討其摻雜前後微結構變化、電性的提升和光學性質的調變。最後研究奈米晶體在元件上的特性,研究其未來在產業應用上的優勢。
    研究結果顯示,利用兩階段共蒸鍍法合成出摻雜鎵之氧化鋅奈米線有著很高密度和陣列的型態,可運用於電子場發射特性,並分別測得其起始電場在3.4 V/μm時可得到電流密度為10 μA/cm2、臨界值在5.4 V/μm可得到1 mA/cm2及場效應增強係數β值高達5945。接著進一步討論經由MEVVA系統所植入摻雜鈦之氧化鋅奈米線對光電特性的提升,由實驗結果發現隨著摻雜鈦含量的提升,陰極發光光譜上有著一藍位移的現象發生。並藉由Burstein-Moss 效應的驗證可得知能帶會隨著電子載流密度的提升而增加。此外利用在FE-SEM環境下之四點探針系統去探討單一根摻雜鈦之氧化鋅奈米線的電性傳輸特性,其電阻和電阻率隨鈦含量增多而降低。而另一發現則是經由兩電極彎曲奈米線實驗可得到其具有壓電特性。而進一步配合金屬-半導體-金屬(M-S-M)理論模型計算出其電子濃度為2.7 × 1018 cm-3、電阻率為84.1 Ω cm及電子遷移率為2.75 × 10-2 cm2V-1s-1。
    本研究中另一研究重點則是探討經由氮電漿處理、氮氣混入法及控制NH3開關頻率的技術能有效摻雜氮原子進入氧化鎵奈米線中,以達到不同成分濃度的摻雜及結構的改變,來觀察低溫陰極發光光譜上的調變並討論其發光機制。研究結果發現當氮原子摻雜量提升的時候,可發現氧空缺的產生會造成能帶在光譜上的偏移,因此影響激發光的變化,進而達到大幅度調變激發光的特性。最後則是設計圖樣讓奈米線運用於元件上,成功合成出p-n 奈米線連接器及一氧化氮氣體感測器,以利低維度奈米氮氧化合物奈米晶體成為未來半導體產業上的開發與應用。


    Low dimensional oxide/nitride nanocrystals were synthesized by thermal chemical vapor deposition, e.g. gallium, titanium, nitrogen atoms doped into the nanocrystals in this study. Four particular optoelectronic nanomaterials were studied, they are: Ga-doped ZnO nanowires fabricated by two-step co-evaporation methods; ZnO nanowires implanted with Ti ions by using a vapor vacuum arc (MEVVA) ion implanter; N-doped β-Ga2O3 nanowires synthesized via nitrogen plasma and nitrogen mixed method, and zigzag Ga2O3/GaN fabricated by controlling a switch (on/off = 10 min per each) of ammonia (NH3) gas process. Transformation of microstructure before and after doping, promoting electronic property, and modulation of optical property were then investigated.
    The self-aligned high density Ga-doped ZnO nanowires can be applied in electron field emission properties by using a two-step co-evaporation method to obtain a turn-on field of 3.4 V/um at a current density of 10 μA/cm2, a threshold field of 5.4 V/um at a current density of 1 mA/cm2, and a field-enhancement factor β of 5945 which is far better than the metallic emitter. The optoelectronic performance from the Ti-doped ZnO nanowires showed that the cathodoluminescence (CL) spectra display a blue-shift in the spectrum with increasing the dopant (Ti) concentration. Furthermore, the energy of the bandgap increases with the electron carrier density increase via the effect of Burstein-Moss. In addition, the electrical transport properties of a single Ti-doped ZnO nanowire were evaluated in a four-probe FE-SEM system and found that the resistivity decreases with increasing Ti content. More importantly the conductance of the Ti-doped ZnO nanowires was made to be dropped significantly with the increasing of mechanical bending, that is to exhibit a piezoelectronic character. The relevant electron concentration, resistivity, and electron mobility of a single Ti-doped ZnO nanowire are respectively 2.7 × 10 18 cm-3, 84.1 Ω cm, and 2.75 × 10-2 cm2V-1s-1 with the M-S-M model.
    The β-Ga2O3 nanowires can be doped with nitrogen atoms effectively by nitrogen plasma treatment and controlling a switch of (NH3) gas process to observe the modulation of light emission via CL measurement at low temperature. The defects like vacancies could result in a shift of the bandgap at the CL spectra with increasing the nitrogen dopant, thereby affecting the variation of the modulation of the excitation characteristics significantly. Finally, the design pattern for nanowires in the devices have been successfully fabricated, for instance, the p-n nanowire junctions and nitric oxide gas sensors to accommodate the low dimensional oxide/nitride nanocrystals on the development and application of semiconductor industry in the future.

    Contents ABSTRACT I 摘要 III ACKNOWLEDGMENTS V LIST OF TABLES XII FIGURE CAPTIONS XIII LIST OF ACRONYMS AND ABBREVIATIONS XVII PART I: INTRODUCTION 1 Chapter 1 Motivation and Scope of the Thesis 1 1.1 Motivation 1 1.2 Scope of the Thesis 2 References 4 Chapter 2 Literature Review 5 2.1 An Overview of Nanomaterials and Nanotechnology 5 2.2 Definition of Nanomaterials 8 2.3 Size and Quantum Effects 9 2.4 Top-Down and Bottom-Up Mechanism 14 2.5 One-Dimensional Nanostructures via Bottom-Up Synthesis 16 2.6 Challenges in Nanotechnology 20 2.7 ZnO Nanostructure 21 2.7.1 Crystal Structure and Properties 21 2.7.2 Doping of ZnO 23 2.7.3 Applications of ZnO nanostructures 23 2.8 Ga2O3 Nanostructure 24 2.8.1 Crystal Structure and Properties 24 2.8.2 Doping of ß-Ga2O3 27 2.8.3 Applications of ß-Ga2O3 nanostructures 27 References 28 PART II METHODS 36 Chapter 3 Experimental Procedures 36 3.1 An Overview of the Experiment Design and Application 36 3.2 Synthesis Equipment 39 3.2.1 Thermal Chemical Vapor Deposition (TCVD) System 39 3.2.2 Metal Vapor Vacuum Arc (MEVVA) System 41 3.2.3 Microwave Plasma Enhanced Chemical Vapor Deposition (MPECVD) System 43 3.3 Microstructures Characterization Instrument 45 3.3.1 Scanning Electron Microscope (SEM) 45 3.3.2 X-Ray Diffractometer (XRD) 45 3.3.3 Transmission Electron Microscope (TEM) 46 3.3.4 Energy Dispersion Spectrometer (EDS) 46 3.3.5 X-ray Photoelectron Spectrum (XPS) 47 3.3.6 Auger Electron Nanoscope (AES) 48 3.3.7 Optical Lithography 48 3.3.8 Electron Paramagnetic Resonance (EPR) 48 3.4 Properties Measurement Equipment 49 3.4.1 Cathodoluminescence (CL) 49 3.4.2 Photoluminescence (PL) 49 3.4.3 Ultraviolet Visible (UV-Vis) 50 3.4.4 Field Emission Measurements 50 3.4.5 Multi-Probes Nano Electrical Measurement System. 51 3.4.6 I-V Characterization at Room and High Temperatures 51 3.4.7 Gas sensing System 51 PART III: RESULTS AND DISCUSSION 53 Chapter 4 Field Emission and Optical Properties of Ga-doped ZnO Nanowires Synthesized via Thermal Evaporation 53 4.1 Background and Motivation 53 4.2 Experimental Procedures 54 4.3 Results and Discussion 57 4.4 Summary 74 References 75 Chapter 5 Enhanced Optoelectronic Performance from the Ti-doped ZnO Nanowires 83 5.1 Background and Motivation 83 5.2 Experimental Procedures 85 5.3 Results and Discussion 87 5.4 Summary 107 References 108 Chapter 6 Modulation of Luminescence Emission Spectra of N-doped β-Ga2O3 Nanowires by Thermal Evaporation 115 6.1 Background and Motivation 115 6.2 Experimental Procedures 116 6.3 Results and Discussion 117 6.4 Summary 129 References 130 Chapter 7 Effect of the doped Nitrogen on the Optical Properties of β-Ga2O3 Nanowires 134 7.1 Background and Motivation 134 7.2 Experimental Procedures 135 7.3 Results and Discussion 136 7.4 Summary 143 References 144 Chapter 8 Ultrahigh-Diensity β-Ga2O3/N-doped β-Ga2O3 Schottky and p-n Nanowire Junctions: Synthesis and Electrical Transport Properties 146 8.1 Background and Motivation 146 8.2 Experimental Procedures 148 8.3 Results and Discussion 151 8.4 Summary 172 References 173 Chapter 9 Zigzag GaN/Ga2O3 Heterogeneous Nanowires: Synthesis, Optical and Gas Sensing Properties 182 9.1 Background and Motivation 182 9.2 Experimental Procedures 183 9.3 Results and Discussion 184 9.4 Summary 193 References 194 PART IV CONCLUSIONS AND FUTURE WORK 199 Chapter 10 Conclusions 199 Chapter 11 Future Work 203 PUBLICATION LIST 205

    Chapter1
    [1] G.E. Moore, “Gramming More Components onto Integrated Circuits”, Proc.
    IEEE 86, 82 (1998).
    [2] P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J.
    Pham, R. He, and H.J. Choi, “Controlled Growth of ZnO Nanowires and Their
    Optical Properties”, Adv. Mater. 12, 323 (2002).
    [3] C.M. Lieber, and Z.L. Wang, “Functional Nanowires”, MRS Bull. 32, 99
    (2007).
    Chapter2
    [1] K.C. Grabar, P.C. Smith, M.D. Musick, J.A. Davis, D.G. Walter, M.A. Jackson,
    A.P. Guthrie, and M.J. Natan, “Kinetic Control of Interparticle Spacing in Au
    Colloid-Based Surfaces: Rational Nanometer-Scale Architecture”, J. Am. Chem.
    Soc. 118, 1148 (1996).
    [2] K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, “Edge State in
    Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence”, Phys.
    Rev. B 54, 17954 (1996)
    [3] C.Y. Pan, Z.J. Zhang, X. Su, Y. Zhao, and J.G. Liu, “Characterization of Fe
    Nanorods Grown Directly from Submicron-Sized Iron Grains by Thermal
    Evaporation”, Phys. Rev. B 70, 233404 (2004).
    [4] A.J. Zarur, and J.Y. Ying, “Reverse Microemulsion Synthesis of Nanostructured
    Complex Oxides for Catalytic Combustion”, Nature 403, 65 (2000).
    [5] J.H. Hodak, A. Henglein, and G.V. hartland, “Photophysics of Nanometer Sized
    Metal Particles: Electron-Phonon Coupling and Coherent Excitation of
    Breathing Vibrational Modes”, J. Phys. Chem. B 104, 9954 (2000).
    [6] M. Haruta, “Catalysis of Gold Nanoparticles Deposited on Metal Oxides”,
    CATTECH 6, 102 (2002).
    [7] J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen, “Softening of Nanocrystalline
    Metals at very Small Grain Sizes”, Nature 391, 561 (1998).
    [8] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, “Anomalously
    Increased Effective Thermal Conductivities of Ethylene Glycol-Based
    Nanofluids Containing Copper Nanoparticles”, Appl. Phys. Lett. 78, 718
    (2001).
    [9] S.B. Soffer, “Statistical Model for Size Effect in Electrical Conduction”, J. Appl.
    Phys. 38, 1710 (1967).
    [10] V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, and N.S. Wingreen, “Tunneling into a Single Magnetic Atom: Spectroscopic Evidence of the Kondo
    Resonance”, Science 280, 567 (1998).
    [11] Y.H. Kao, “Size-Effect Variation of Optical Properties of Conductors”, Phys.
    Rev. 144, 405 (1966).
    [12] I. Felner, “The Effect of Chemical Substitution on Superconductivity in the
    YBa2Cu3O7”, Thermochimica Acta. 174, 41 (1991).
    [13] R.P. Feynman, “There’s plenty of room at the bottom”, at the Annual
    Meeting of the American Physical Society on December 29th at the California
    Institute of Technology (1959).
    [14] N. Taniguchi, “On the basic concept of Nano-Technology”, Proc. Intl. Conf.
    Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering (1974).
    [15] K.E. Drexler, “Molecular Engineering - An Approach to the Development of
    General Capabilities for Molecular Manipulation”, Proc. Nat. Acad. Sci. 78,
    5275 (1981).
    [16] K.K. Haldar, T. Sen, and A. Patra, “Au@ZnO Core-Shell Nanoparticles are
    Efficient Energy Acceptors with Organic Dye Donors”, J. Phys. Chem. C 112,
    11650 (2008)
    [17] R. Tena-Zaera, J. Elias, G. Wang, and C. Levy- Clément, “Role of Chloride Ions
    on Electrochemical Deposition of ZnO Nanowire Arrays from O-2 Reduction”, J.
    Phys. Chem. C 111, 16706 (2007).
    [18] B.S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy, “Stable, Solution-Processed,
    High-Mobility ZnO Thin-Film Transistors”, J. Am. Chem. Soc. 129, 2750
    (2007).
    [19] K.X. Yao, and H.C. Zeng, “Fabrication and Surface Properties of Composite
    Films of SAM/Pt/ZnO/SiO2”, Langmuir 24, 14234 (2008).
    [20] B.D. Fahlman, “Materials chemistry”, Springer, USA, 2007.
    [21] X.F. Duan, and C.M. Lieber, “General Synthesis of Compound Semiconductor
    Nanowires”, Adv. Mater. 12, 298 (2000).
    [22] C.M. Lieber, “Nanoscale Science and Technology: Building a Big Future from
    Small Things”, MRS Bull. 28, 486 (2003).
    [23] R.S. Wagner, and W.C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal
    Growth (New Method Growth Catalysis from Impurity Whisker Epitaxial +
    Large Crystals SI E )”, Appl. Phys. Lett. 4, 89 (1964).
    [24] T.J. Trentler, K.M. Hickman, S.C. Goel, A.M. Viano, P.C. Gibbons, and W.E.
    Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors - An
    Analogy to Vapor-Liquid-Solid Growth”, Science 270, 1791 (1995).
    [25] H.J. Fan, P. Werner, and M. Zacharias, “Semiconductor Nanowires: From
    Self-Organization to Patterned Growth”, Small 2, 700 (2006).
    [26] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Novel Nanostructures of Functional
    Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, 9 (2003).
    [27] H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y.
    Ding, Q.L. Huang, and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical
    Evaporation”, Solid State Commun. 109, 677 (1999).
    [28] Z.L. Wang, X.Y. Kong, Y. Ding, P.X. Gao, W.L. Hughes, R.S. Yang, and Y.
    Zhang, “Semiconducting and Piezoelectric Oxide Nanostructures Induced by
    Polar Surfaces”, Adv. Funct. Mater. 14, 943 (2004).
    [29] S.M. SZE, “Semiconductor devices”, John Wiley&Sons.INC., Taiwan, 2001.
    [30] B. Meyer, and D. Marx, “Density-Functional Study of the Structure and
    Stability of ZnO Surfaces”, Phys. Rev. B 67, 035403 (2003).
    [31] K. Keem, H. Kim, G.T. Kim, J.S. Lee, B. Min, K. Cho, M.Y. Sung, and S.
    Kim, “Photocurrent in ZnO Nanowires Grown from Au Electrodes”, Appl. Phys.
    Lett. 84, 4376 (2004).
    [32] M.S. Arnold, P. Avouris, Z.W. Pan, and Z.L. Wang, “Field-Effect Transistors
    Based on Single Semiconducting Oxide Nanobelts”, J. Phys. Chem. B 107, 659
    (2003).
    [33] M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R.
    Russo, P.D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”,
    Science 292, 1897 (2001).
    [34] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H.J. Lee, “Field Emission
    from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature”, Appl.
    Phys. Lett. 81, 3648 (2002).
    [35] W.I. Park, Y.H. Jun, S.W. Jung, and G.C. Yi, “Excitonic Emissions Observed in
    ZnO Single Crystal Nanorods”, Appl. Phys. Lett. 82, 964 (2003).
    [36] Z.L. Wang, “The New Field of Nanopiezotronics”, Mater. Today 7, 26 (2007).
    [37] J.H. Park, H.J. Choi, Y.J. Choi, S.H. Sohn, and J.G. Park, “Ultrawide ZnO
    Nanosheets”, J. Mater. Chem. 14, 35 (2004).
    [38] C.G. Van de Walle, S. Limpijumnong, and J. Neugebauer, “First-Principles
    Studies of Beryllium Doping of GaN”, Phys. Rev. B 6324, 245205 (2001).
    [39] S.F.J. Cox, E.A. Davis, and S.P. Cottrell, “Experimental Confirmation of the
    Predicted Shallow Donor Hydrogen State in Zinc Oxide”, Phys. Rev. Lett. 86,
    2601 (2001).
    [40] T. Yamada, H. Makion, N. Yamamoto, and T. Yamamoto, “Ingrain and Grain
    Boundary Scattering Effects on Electron Mobility of Transparent Conducting
    Polycrystalline Ga-Doped ZnO Films”, J. Appl. Phys. 107, 123534 (2010).
    [41] J.G. Lu, L.P. Zhu, Z.Z. Ye, F. Zhuge, B.H. Zhao, D.W. Ma, L. Wang, and J.Y.
    Huang, “Reproducibility and Stability of N-Al Codoped p-type ZnO Thin
    Films”, J. Mater. Sci. 41, 467 (2006).
    [42] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, and E.L.
    Garfunkel, “Ga-Doped ZnO Single-Crystal Nanotips Grown on Fused Silica
    by Metalorganic Chemical Vapor Deposition”, Appl. Phys. Lett. 83, 3401
    (2003).
    [43] S.Y. Bae, C.W. Na, J.H. Kang, and J. Park, “Comparative Structure and Optical
    Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal
    Evaporation”, J. Phys. Chem. B 109, 2526 (2005).
    [44] S.Y. Li, P. Lin, C.Y. Lee, T.Y. Tseng, and C.J. Huang, “Effect of Sn Dopant on
    the Properties of ZnO Nanowires”, J. Phys. D Appl. Phys. 37, 2274 (2004).
    [45] C.H. Liu, W.C. Yiu, F.C.K. Au, J.X. Ding, C.S. Lee, and S.T. Lee, “Electrical
    Properties of Zinc Oxide Nanowires and Intramolecular p-n Junctions”, Appl.
    Phys. Lett. 83, 3168 (2003).
    [46] W.I. Park, G.C. Yi, J.W. Kim, and S.M. Park, “Schottky Nanocontacts on ZnO
    Nanorod Arrays”, Appl. Phys. Lett. 82, 4358 (2003).
    [47] W.I. Park, and G.C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays
    Vertically Grown on p-GaN”, Adv. Mater. 16, 87 (2004).
    [48] S. Geller, “Crystal Structure of Beta-Ga2O3”, J. Chem. Phys. 33, 676 (1960).
    [49] S. Sharma, and M.K. Sunkara, “Direct Synthesis of Gallium Oxide Tubes,
    Nanowires, and Nanopaintbrushes”, J. Am. Chem. Soc. 124, 12288 (2002).
    [50] N.D. Cuong, Y.W. Park, and S.G. Yoon, “Microstructural and Electrical
    Properties of Ga2O3 Nanowires Grown at Various Temperatures by
    Vapor-Liquid-Solid Technique”, Sens. Actuators B 140, 240 (2009).
    [51] Z.S. Li, C. de Groot, and J.H. Moodera, “Gallium Oxide as an Insulating
    Barrier for Spin-Dependent Tunneling Junctions”, Appl. Phys. Lett. 77, 3630
    (2000).
    [52] P.C. Chang, Z.Y. Fan, W.Y. Tseng, A. Rajagopal, and J.G. Lu, “Beta-Ga2O3
    Nanowires: Synthesis, Characterization, and p-Channel Field-Effect
    Transistor”, Appl. Phys.Lett. 87, 222102 (2005).
    [53] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Gallium Oxide Nanoribbons and
    Nanosheets”, J. Phys.Chem. B 106, 902 (2002).
    [54] E. Nogales, B. Mendez, and J. Piqueras, “Cathodoluminescence from
    Beta-Ga2O3 Nanowires”, Appl. Phys. Lett. 86, 113112 (2005)
    [55] T. Miyata, T. Nakatani, T. Minami, “Gallium Oxide as Host Material for
    Multicolor Emitting Phosphors”, J. Lumin. 87, 1183 (2000).
    Chapter4
    [1] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,
    and P. Yang, “Room-Temperature Ultraviolet Nanowire Nnanolasers”, Science
    292, 1897 (2001).
    [2] Z.W. Pan, Z.R. Dai, and Z.L. Wang, “Nanobelts of Semiconducting Oxides”,
    Science 291, 1947 (2001).
    [3] B.A. Buchine, W.L. Hughes, F.L. Degertekin, and Z.L. Wang, “Bulk Acoustic
    Resonator Based on Piezoelectric ZnO Belts”, Nano Lett. 6, 1155 (2006).
    [4] F. Li, Y. Ding, P.X.X. Gao, X.Q. Xin, and Z.L. Wang, “Single-Cystal Hexagonal
    Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth
    Mechanism”, Angew. Chem. Int. Ed. 43, 5238 (2004).
    [5] M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, and P.D. Yang, “Catalytic
    Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. 13, 113
    (2001).
    [6] P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris,
    J. Pham, R.R. He, and H.J. Choi, “Ontrolled Growth of ZnO Nanowires and
    Their Optical Properties”, Adv. Funct. Mater. 12, 323 (2002).
    [7] B.P. Zhang, N.T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M.
    Kawasaki, and H. Koinuma, “Formation of Highly Aligned ZnO Tubes on
    Sapphire (0001) Substrates”, Appl. Phys. Lett. 84, 4098 (2004).
    [8] X.D. Wang, C.J. Summers, and Z.L. Wang, “Large-Scale Hexagonal-Patterned
    Growth of Aligned ZnO Nanorods for Nano-Optoelectronics and Nanosensor
    Arrays”, Nano Lett. 4, 423 (2004).
    [9] X.Y. Kong, Y. Ding, and Z.L. Wang, “Metal-Semiconductor Zn-ZnO Core-Shell
    Nanobelts and Nanotubes”, J. Phys. Chem. B 108, 570 (2004).
    [10] Z.W. Pan, S.M. Mahurin, S. Dai, and D.H. Lowndes, “Nanowire Array
    Gratings with ZnO Combs”, Nano Lett. 5, 723 (2005).
    [11] J. Bao, M.A. Zimmler, F. Capasso, X. Wang, and Z.F. Ren, “Broadband ZnO
    Single-Nanowire Light-Emitting Diode”, Nano Lett. 6, 1719 (2006).
    [12] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, and C.L. Lin,
    “Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas
    Sensors”, Appl. Phys. Lett. 84, 3654 (2004).
    [13] J.B. Baxter, and E.S. Aydil. “Nanowire-Based Dye-Sensitized Solar Cells”,
    Appl. Phys. Lett. 86, 053114 (2005).
    [14] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field Emission
    from Well-Aligned Zinc Oxide Nanowires Grown at Low Temperature”, Appl.
    Phys. Lett. 81, 3648 (2002).
    [15] J.H. He, R. Yang, Y.L. Chueh, L.J. Chou, L.J. Chen, and Z.L. Wang, “Aligned
    AlN Nanorods with Multi-Tipped Surfaces - Growth, Field-Emission, and
    Cathodoluminescence Properties”, Adv. Mater. 18, 650 (2006).
    [16] S.L. Cho, J. Ma, Y.K. Kim, Y. Sun, G.K.L. Wong, and J.B. Ketterson,
    “Photoluminescence and Ultraviolet Lasing of Polycrystalline ZnO Thin Films
    Prepared by the Oxidation of the Metallic Zn”, Appl. Phys. Lett. 75, 2761
    (1999).
    [17] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, and D.S. Xu, “Morphological Control of
    ZnO Nanostructures by Electrodeposition”, J. Phys. Chem. B 109, 13519
    (2005).
    [18] B.K. Gupta, D. Haranath, S. Chawla, H. Chander, V.N. Singh, and V.
    Shanker, “Self-Catalytic Synthesis, Structure and Properties of Ultra-Fine
    Luminescent ZnO Nanostructures for Field Emission Applications”,
    Nanotechnology 21, 225709 (2010).
    [19] L.W. Chang, J.W. Yeh, C.F. Li, M.W. Huang, and H.C. Shin, “Modulation of
    Luminescence Emission Spectra of N-Doped Beta-Ga2O3 Nanowires by
    Thermal Evaporation”, Thin Solid Films 518, 1434 (2009).
    [20] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.
    Avrutin, S.J. Cho, and H. Morkoc, “A Comprehensive Review of ZnO
    Materials and Devices”, J. Appl. Phys. 98, 041301 (2005).
    [21] L.A. Xu, Y. Su, Y.Q. Chen, H.H. Xiao, L.A. Zhu, Q.T. Zhou, and S. Li,
    “Synthesis and Characterization of Indium-Doped ZnO Nanowires with
    Periodical Single-Twin Structures”, J. Phys. Chem. B 110, 6637 (2006).
    [22] F. J. Sheini, M.A. More, S.R. Jadkar, K.R. Patil, V.K. Pillai, and D.S. Joag,
    “Observation of Photoconductivity in Sn-Doped ZnO Nanowires and Their
    Photoenhanced Field Emission Behavior”, J. Phys. Chem. C 114, 3843
    (2010).
    [23] L. Li, K. Yu, Y. Wang, and Z. Zhu, “Single-Cystal Hexagonal Disks and Rings
    of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism”,
    Appl. Surf. Sci. 256, 3361 (2010).
    [24] S.M. Zhou, X.H. Zhang, X.M. Meng, S.K. Wu, and S.T. Lee, “Synthesis and
    Optical Properties of Pb-Doped ZnO Nanowires”, Phys. Stat. Sol. A 202, 405
    (2005).
    [25] R.G.S. Pala, and H. Metiu, “Selective Promotion of Different Modes of
    Methanol Adsorption via the Cation Substitutional Doping of
    ZnO(10(1)over-bar0) Surface”, J. Catal. 254, 325 (2008).
    [26] J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, “Handbook of
    X-ray Photoelectron Spectroscopy”, Perkin-Elmer Corp., Eden Prarie, Minn,
    USA, 1992.
    [27] D. Galland, and A. Herve, “Esr Spectra of Zinc Vacancy in ZnO”, Phys. Lett. A
    33, 1 (1970).
    [28] D. Galland, and A. Herve, “Temperature Dependamce of ESR-Spectrum of
    Zinc Vacancy in ZnO”, Solid State Commun. 14, 953 (1974).
    [29] L.Q. Jing, Z.L. Xu, J. Shang, X.J. Sun, W.M. Cai, and H.C. Guo, “The
    Preparation and Characterization of ZnO Ultrafine Particles”, Mater. Sci. Eng.
    A 332, 356 (2002).

    [30] A. P pple, and G. V lkel, “ESR and Photo-ESR Investigations of Zinc
    Vacancies and Interstitial Oxygen Ions in Undoped ZnO Ceramics”, Phys.
    Status Solidi A 125, 571 (1991).
    [31] P.H. Kasai, “Electron SPIN Resonance Studies of Donors and Acceptors in
    ZnO”, Phys. Rev. 130, 989 (1963).
    [32] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, and J.A. Voigt,
    “Mechanisms Behind Green Photoluminescence in ZnO Phosphor Powders”,
    Appl. Phys. Lett. 68, 622 (2002).
    [33] Y. Dai, Y. Zhang, Q.K. Li, and C.W. Nan, “Synthesis and Optical Properties of
    Tetrapod-Like Zinc Oxide Nanorods”, Chem. Phys. Lett. 358, 83 (2002).
    [34] S.Y. Bae, C.W. Na, J.H. Kang, and J. Park, “Comparative Structure and Optical
    Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal
    Evaporation”, J. Phys. Chem. B 109, 2526 (2005).
    [35] S.Y. Lee, Y.W. Song, and K.A. Jeon, “Synthesis and Analysis of
    Resistance-Controlled Ga-doped ZnO Nanowires”, J. Crystal Growth 310,
    4477 (2008).
    [36] A.E. Morales, and U. Pal, “Defect Annihilation and Morphological
    Improvement of Hydrothermally Grown ZnO Nanorods by Ga Doping”, Appl.
    Phys. Lett. 93, 193120 (2008).
    [37] J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, and E.L.
    Garfunkel, “Ga-doped ZnO Single-Crystal Nanotips Grown on Fused Silica by
    Metalorganic Chemical Vapor Deposition”, Appl. Phys. Lett. 83, 3401 (2003).
    [38] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E.
    Gnade, “Mechanisms Behind Green Photoluminescence in ZnO Phosphor
    Powders”, J. Appl. Phys. 79, 7983 (1996).
    [39] V.N. Tondare, C. Balasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole,
    S.V. Bhoraskar, and M. Bhadbhade, “Field Emission from Open Ended
    Aluminum Nitride Nanotubes”, Appl. Phys. Lett. 80, 4831 (2002).
    [40] S.H. Lai, K.L. Chang, and H.C. Shih, “Electron Field Emission from Various
    Morphologies of Fluorinated Amorphous Carbon Nanostructures”, Appl. Phys.
    Lett. 85, 6248 (2004).
    [41] X.D. Bai, E.G. Wang, P. Gao, and Z.L. Wang, “Measuring the Work Function
    at a Nanobelt Tip and at a Nanoparticle Surface”, Nano Lett. 3, 1147 (2003).
    [42] M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, E.E.B. Campbell, D.
    Malsch, and J.A. Schaefer, “Highly Efficient Electron Field Emission from
    Decorated Multiwalled Carbon Nanotube Films”, Appl. Phys. Lett. 85, 4487
    (2004).
    [43] Y.M. Wong, S. Wei, W.P. Kang, J.L. Davidson, W. Hormeister, J.H. Huang,
    and Y. Cui, “Carbon Nanotubes Field Emission Devices Grown by Thermal
    CVD with Palladium as Catalysts”, Diamond Relat. Mater. 13, 2105 (2004).
    [44] X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, and D. Golberg, “Inorganic
    Semiconductor Nanostructures and Their Field-Emission Applications”, J.
    Mater. Chem. 18, 509 (2008).
    [45] Y. Tang, H. Cong, Z. Chen, and H. Cheng, “An Array of Eiffel-Tower-Shape
    AlN Nanotips and Its Field Emission Properties”, Appl. Phys. Lett. 86, 233104
    (2005).
    [46] Z.S. Wu, S.Z. Deng, N.S. Xu, Jian Chen, J. Zhou, and Jun Chen,
    “Needle-Shaped Silicon Carbide Nanowires: Synthesis and Field Electron
    Emission Properties”, Appl. Phys. Lett. 80, 3829 (2002).
    [47] L. Zhu, J. Li, Z. Ye, H. He, and X. Chen, “Photoluminescence of Ga-Doped
    ZnO Nanorods Prepared by Chemical Vapor Deposition”, Opt. Mater. 31, 237
    (2008).
    [48] T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, “Binary
    Alloy Phase Diagrams”, ASM international, Ohio, 1990, pp. 1977.
    [49] A. Janotti, and C.G. Van de Walle, “Oxygen vacancies in ZnO”, Appl. Phys.
    Lett. 87, 122102 (2005).
    [50] F. Claeyssens, C.L. freeman, N.L. Allan, Y. Sun, M.N.R. Ashfold, and J.H.
    Harding, “Growth of ZnO Thin films - Experiment and Theory”, J. Mater.
    Chem.15, 139 (2005).
    [51] H. Matsui, N. Hasuike, H. Harima, and H. tabata, “Growth Evolution of
    Surface Nanowires and Large Anisotropy of Conductivity on MgZnO/ZnO
    Quantum Wells Based on M-Nonpolar (10-10) ZnO”, J. Appl. Phys. 104,
    094309 (2008).
    Chapter5
    [1] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,
    and P. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science 292,
    1897 (2001).
    [2] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly
    Sensitive and Selective Detection of Biological and Chemical Species”, Science
    293, 1289 (2001).
    [3] D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, and C.W. Zhou,
    “Detection of NO2 Down to ppb Levels Using Individual and Multiple In2O3
    Nanowire Devices”, Nano Lett. 4, 1919 (2004).
    [4] G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber, “Multiplexed
    Electrical Detection of Cancer Markers with Nanowire Sensor Arrays”, Nat.
    Biotechnol. 23, (2005) 1294.
    [5] Q.H. Li, T. Gao, Y.G. Wang, and T.H. Wang, “Adsorption and Desorption of
    Oxygen Probed from ZnO Nanowire Films by Photocurrent Measurements”,
    Appl. Phys. Lett. 86, 123117 (2005).
    [6] B.S. Kang, F. Ren, Y.W. Heo, L.C. Tien, D.P. Norton, and S.J. Pearton, “pH
    Measurements with Single ZnO Nanorods Integrated with a Microchannel”,
    Appl. Phys. Lett. 86, 112105 (2005).
    [7] Z.L. Wang, and J. Song, “Piezoelectric Nanogenerators Based on Zinc Oxide
    Nanowire Arrays”, Science 312, 242 (2006).
    [8] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu, and Z.L. Wang, “Piezoelectric
    Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO
    Nanowire”, Nano Lett. 6, 2768 (2006).
    [9] J. Bao, M.A. Zimmler, and F. Capasso, “Broadband ZnO Single-Nanowire
    Light-Emitting Diode”, Nano Lett. 6, 1719 (2006).
    [10] G.T. Du, W.F. Liu, J.M. Bian, L.Z. Hu, H.W. Liang, X.S. Wang, A.M. Liu, and
    T.P. Yang, “Room Temperature Defect Related Electroluminescence from ZnO
    Homojunctions Grown by Ultrasonic Spray Pyrolysis”, Appl. Phys. Lett. 89,
    052113 (2006).
    [11] R.S. Conley, L. Stecher, and Y. Ono, “Directed Integration of ZnO Nanobridge
    Devices on a Si Substrate”, Appl. Phys. Lett. 87, (2005) 223114.
    [12] R.R. He, D. Gao, R. Fan, A.I. Hochbaum, C. Carraro, R. Maboudian, and P.Yang,
    “Si nanowire Bridges in Microtrenches: Integration of Growth into Device
    Fabrication”, Adv. Mater. 17, 2098 (2005).
    [13] J.S. Lee, M.S. Islam, and S. Kim, “Direct Formation of Catalyst-Free ZnO
    Nanobridge Devices on an Etched Si Substrate Using a Thermal Evaporation
    Method”, Nano Lett. 6, 1487 (2006).
    [14] J.S. Lee, M.S. Islam, and S. Kim, “Photoresponses of ZnO Nanobridge
    Devices Fabricated Using a Single-Step Thermal Evaporation Method”,
    Sensors Actuators B 126, 73 (2007).
    [15] R.S. Chen, S.W. Wang, Z.H. Lan, J.T. H. Tsai, C.T. Wu, L.C. Chen, K.H. Chen,
    Y.S. Huang, and C.C. Chen, “On-Chip Fabrication of Well-Aligned and
    Contact-Barrier-Free GaN Nanobridge Devices with Ultrahigh Photocurrent
    Responsivity”, Small 4, 925 (2008).
    [16] B.Y. Geng, G.Z. Wang, Z. Jiang, T. Xie, S.H. Sun, G.W. Meng, and L.D. Zhang,
    “Synthesis and Optical Properties of S-Doped ZnO Nanowires”, Appl. Phys.
    Lett. 82, 4791 (2003).
    [17] X.Y. Xue, Y.J. Chen, Q.H. Li, C. Wang, Y.G. Wang, and T.H. Wang, “Electronic
    Transport Characteristics Through Individual ZnSnO3 Nanowires”, Appl.
    Phys. Lett. 88, 182102 (2006).
    [18] M. Shuai, L. Liao, H.B. Lu, L. Zhang, J.C. Li, and D.J. Fu,
    “Room-Temperature Ferromagnetism in Cu(+) Implanted ZnO Nanowires”, J.
    Phys. D 41, 135010 (2008).
    [19] Y.H. Lin, Y.C. Hsueh, C.C. Wang, J.M. Wu, T.P. Perng, and H.C. Shih,
    “Enhancing the Photon-Sensing Properties of ZnO Nanowires by Atomic Layer
    Deposition of Platinum”, Electrochem. Solid-State Lett. 13, K93 (2010).
    [20] L.W. Chang, C.F. Li, Y.T. Hsieh, C.M. Liu, Y.T. Cheng, J.W. Yeh, and H.C.
    Shih, “Ultrahigh-Density Beta-Ga2O3/N-doped Beta-Ga2O3 Schottky and p-n
    Nanowire Junctions: Synthesis and Electrical Transport Properties”, J.
    Electrochem. Soc. 158, D136 (2011).
    [21] Z.W. Pan, Z.R. Dai, and Z.L. Wang, “Nanobelts of Semiconducting Oxides”,
    Science 291, 1947 (2001).
    [22] D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, “Small-Diameter
    Silicon Nanowire Surfaces”, Science 299, 1874 (2003).
    [23] K. Keis, L. Vayssieres, H. Rensmo, S.E. Lindquist, and A. Hagfeldt,
    “Photoelectrochemical Properties of Nano- to Microstructured ZnO
    Electrodes”, J. Electrochem. Soc. 148, A149 (2001).
    [24] Z.Y. Fan, D.W. Wang, P.C. Chang, W.Y. Tseng, and J.G. Lu, “ZnO Nanowire
    Field-Effect Transistor and Oxygen Sensing Property”, Appl. Phys. Lett. 85,
    5923 (2004).
    [25] Z.Y. Fan, and J.G. Lu, “Electrical Properties of ZnO Nanowire-Field Effect
    Transistors Characterized with Scanning Probes”, Appl. Phys. Lett. 86, 123510
    (2005).
    [26] S. Kohiki, M. Nishitani, and T. Wada, “Enhanced Electrical-Conductivity of
    Zinc-Oxide Thin-Films by Ion-Implantation of Gallium, Aluminum, and Boron
    Atoms”, J. Appl. Phys. 75, 2069 (1994).
    [27] G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.X. Tang, I. Shafiq, Z.Z. Ye, C.S.
    Lee, and S.T. Lee, “Tunable n-Type Conductivity and Transport Properties of
    Ga-Doped ZnO Nanowire Arrays”, Adv. Mater. (Weinheim Ger.) 20, 168
    (2008).
    [28] L. Liao, Z. Zhang, Y. Yang, B. Yan, H.T. Cao, L.L. Chen, G.P. Li, T. Wu,
    Z.X. Shen, B.K. Tay, T. Yu, and X.W. Sun, “Tunable Transport Properties of
    n-Type ZnO Nanowires by Ti Plasma Immersion Ion Implantation”, J. Appl.
    Phys. 104, 076104 (2008).
    [29] Y.R. Park, and K.J. Kim, “Optical and Electrical Properties of Ti-Doped ZnO
    Films: Observation of Semiconductor-Metal Transition”, Solid State Commun.
    123, 147 (2002).
    [30] Y.J. Ma, Z. Zhang, F. Zhou, L. Lu, A.Z. Jin and C.Z. Gu, “Hopping Conduction
    in Single ZnO Nanowires”, Nanotechnology 16, 746 (2005).
    [31] R.G.S. Plas, and Horia. Metiu, “Selective Promotion of Different Modes of
    Methanol Adsorption via the Cation Substitutional Doping of a ZnO
    Surface ”, J. Catal. 254, 325 (2008).
    [32] B.G. Yacobi, and D.B. Holt, “Cathodoluminescence Microscopy of Inorganic
    Solids”, Plenum Press, New York (1990).
    [33] M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono, “Electrical Properties of
    Individual ZnO Nanowires”, Nanotechnology 20, 155203 (2009).
    [34] E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev. 93,
    632 (1954).
    [35] K. Sakai, T. Kakeno, T. Ikari, S. Shirakata, T. Sakemi, K. Awai, and T.
    Yamomoto, “Defect Centers and Optical Absorption Edge of Degenerated
    Semiconductor ZnO Thin Films Grown by a Reactive Plasma Deposition by
    Means of Piezoelectric Photothermal Spectroscopy”, J. Appl. Phys. 99, 043508
    (2006).
    [36] J. Hinze, and K. Ellmer, “In Situ Measurement of Mechanical Stress in
    Polycrystalline Zinc-Oxide Thin Films Prepared by Magnetron Sputtering”, J.
    Appl. Phys. 88, 2443 (2000).
    [37] I. Sakaguchi, D. Park, Y. Takata, S. Hishita, N. Ohashi, H. Haneda, and T.
    Mitsuhashi, “An Effect of Annealing on in Implanted ZnO”, Nucl. Instrum.
    Methods Phys. Res. B 206, 53 (2003).
    [38] Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, and L.M. Peng,
    “Detection of NO2 Down to ppb Levels Using Individual and Multiple In2O3
    Nanowire Devices”, Adv. Funct. Mater. 17, 2478 (2007).
    [39] Z.Y. Zhang, C.H. Jin, X.L. Liang, Q. Chen, and L.M. Peng, “Current-Voltage
    Characteristics and Parameter Retrieval of Semiconducting Nanowires”, Appl.
    Phys. Lett. 88, 073102 (2006).
    [40] Z. Fan, and J.G. Lu, “Electrical Properties of ZnO Nanowire Field Effect
    Transistors Characterized with Scanning Probes”, Appl. Phys. Lett. 86,
    032111 (2005).
    [41] S. Yan, L. Sun, P. Qu, N. Huang, Y. Song, and Z. Xiao, “Synthesis of Uniform
    CdS Nanowires in High Yield and Its Single Nanowire Electrical Property”, J.
    Solid State Chem. 182, 2941 (2009).
    Chapter6
    [1] A.P. Alivisatios, “Semiconductor Clusters, Nanocrystals, and Quantum Dots”,
    Science 271, 933 (1996).
    [2] G. Gundiah, A. Govindaraj, and C.N.R. Rao, “Nanowires, Nanobelts and
    Related Nanostructures of Ga2O3”, Chem. Phys. Lett. 351, 189 (2002).
    [3] H.H. Tippins, “Optical Absorption and Photoconductivity in Band Edge of
    Beta-Ga2O3”, Phys. Rev. 140, A316 (1965).
    [4] Z.W. Pan, Z.R. Dai, and Z.L. Wang, “Nanobelts of Semiconducting Oxides”,
    Science 291, 1947 (2001).
    [5] J. Zhan, Y. Bando, J. Hu, F. Xu, and D. Golberg, “Unconventional Gallium
    Oxide Nanowires”, Small 8, 883 (2005).
    [6] E. Nogales, B. Mendez, and J. Piqueras, “Cathodoluminescence from
    Beta-Ga2O3 Nanowires”, Appl. Phys. Lett. 86, 113112 (2005).
    [7] Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y. H. Lee, G.S. Park, W.B.
    Choi, N.S. Lee, and J.M. Kim, “Catalytic Growth of Beta-Ga2O3 Nanowires by
    Arc Discharge”, Adv. Mater. 12, 746 (2000).
    [8] X. Xiang, C.B. Cao, Y. Guo, and H.S. Zhu, “A Simple Method to Synthesize
    Gallium Oxide Nanosheets and Nanobelts”, Chem. Phys. Lett. 378, 660 (2003).
    [9] G. Wang, J. Park, X.Y. Kong, P.R. Wilson, Z. Chen, and J.H. Ahn, “Facile
    Synthesis and Characterization of Gallium Oxide (Beta-Ga2O3) 1D
    Nanostructures: Nanowires, Nanoribbons, and Nanosheets”, Cryst. Growth
    Des. 8, 1940 (2008).
    [10] E. Nogales, J.A. Gercia, B. Mendez, and J. Piqueras, “Red Luminescence of Cr
    in Beta-Ga2O3 Nanowires”, J. Appl. Phys. 101, 033517 (2007).
    [11] J.Y. Li, L. An, C.G. Lu, and J. Liu, “Conversion Between Hexagonal GaN and
    Beta-Ga2O3 Nanowires and Their Electrical Transport Properties”, Nano Lett.
    6, 148 (2006).
    [12] N.Q. Wu, Z. Chen, J. Xu, M. Chyu, and S.X. Mao, “Impedance-Metric
    Pt/YSZ/Au-Ga2O3 Sensor for CO Detection at High Temperature”, Sens.
    Actuators B 110, 49 (2005).
    [13] C.H. Hsieh, L.J. Chou, G.R. Lin, Y. Bando, and D. Golberg, “Nanophotonic
    Switch: Gold-in-Ga2O3 Peapod Nanowires”, Nano Lett. 8, 3081 (2008).
    [14] L. Binet, and D. Gourier, “Origin of the Blue Luminescence of Beta-Ga2O3”, J.
    Phys. Chem. Solids 59, 1241 (1998).
    [15] Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, and D.P. Yu,
    “Luminescence Emission Originating from Nitrogen Doping of Beta-Ga2O3
    Nanowires”, Phys. Rev. B 69, 075304 (2004).
    [16] S. Sharma, and M.K. Sunkara, “Direct Synthesis of Gallium Oxide Tubes,
    Nanowires, and Nanopaintbrushes”, J. Am. Chem. Soc. 124, 12288 (2002).
    [17] C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, and S.Y. Zhang,
    “Catalytic Synthesis and Photoluminescence of Beta-Ga2O3 Nanowires”, Appl.
    Phys. Lett. 78, 3202 (2001).
    [18] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Gallium Oxide Nanoribbons and
    Nanosheets”, J. Phys. Chem. B 106, 902 (2002).
    [19] Y.Y. Wu, R. Fan, and P.D. Yang, “Block-by-Block Growth of
    Single-Crystalline Si/SiGe Superlattice Nanowires”, Nano Lett. 2, 83 (2002).
    [20] H.Y. Peng, N. Wang, X.T. Zhou, Y.F. Zheng, C.S. Lee, and S.T. Lee, “Control
    of Growth Orientation of GaN Nanowires”, Chem. Phys. Lett. 359, 241 (2001).
    [21] S.H. Dalal, D.L. Baptista, K.B.K. Teo, R.G. Lacerda, D.A. Jefferson, and W.I.
    Milne, “Controllable Growth of Vertically Aligned Zinc Oxide Nanowires
    Using Vapour Deposition”, Nanotechnology 17, 4811 (2006).
    [22] T. Harwig, and F. Kellendouk, “Some Observations on Photo-Luminescence of
    Doped Beta-GalliumSesquiOxide”, J. Solid State Chem. 24, 255 (1978).
    [23] V.I. Vasiltsiv, Y.M. Zakharko, and Y.I. Prim, “On the Nature of Blue and
    Green Luminescence Bands of Beta-Ga2O3”, Ukr. Fiz. Zh. (Russ. Ed) 33,
    1320 (1998).
    [24] E.G. Villora, Y. Murakami, T. Sugawara, T. Atou, M. Kikuchi, D. Shindo,
    and T. Fukuda, “Electron Microscopy Studies of Microstructures in
    Beta-Ga2O3 Single Crystals”, Mater. Res. Bull. 37, 769 (2002).
    [25] T. Harwig, F. Kellendonk, and S. Slappendel, “Ultraviolet Luminescence of
    Beta-GalliumSesquiOxide”, J. Phys. Chem. Solids 39, 675 (1978).
    [26] A. Khan, W.M. Jadwisienczak, and M.E. Kordesch, “One-Step Preparation of
    Ultra-Wide Beta-Ga2O3 Microbelts and Their Photolurninescence Study”,
    Physica E 35, 207 (2006).
    [27] U.K. Gautam, L.S. Panchakarla, Benjamin Dierre, X. Fang, Y. Bando, T.
    Sekiguchi, A. Govindaraj, D. Golberg, and C.N.R. Rao, “Solvothermal
    Synthesis, Cathodoluminescence, and Field-Emission Properties of Pure and
    N-Doped ZnO Nanobullets”, Adv. Func. Mater. 19, 131 (2009).
    Chapter7
    [1] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and Control of
    Conductivity of Ultraviolet Transmitting Beta-Ga2O3 Single Crystals”, Appl.
    Phys. Lett. 70, 3561 (1997).
    [2] Y.C. Choi, W.S. Kim, Y.S. Park, S.M. Lee, D.J. Bae, Y.H. Lee, G.S. Park, W.B.
    Choi, N.S. Lee, and J.M. Lim, “Catalytic Growth of Beta-Ga2O3 Nanowires by
    Arc Discharge”, Adv. Mater. 12, 746 (2000).
    [3] P. Feng, J.Y. Zhang, Q.H. Li, and T.H. Wang, “Individual Beta-Ga2O3
    Nanowires as Solar-Blind Photodetectors”, Appl. Phys. Lett. 88, 153107
    (2006).
    [4] E. Nogales, J.A. Gercia, B. Mendez, and J. Piqueras, “Red Luminescence of Cr
    in Beta-Ga2O3 Nanowires”, J. Appl. Phys. 101, 033517 (2007).
    [5] X.F. Duan, and C.M. Lieber, “Laser-Assisted Catalytic Growth of Single Crystal
    GaN Nanowires”, J. Am. Chem. Soc. 122, 188 (2000).
    [6] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Novel nanostructures of Functional Oxides
    Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, 9 (2003).
    [7] L. Binet, and D. Gourier, “Origin of the Blue Luminescence of β-Ga2O3”, J.
    Phys. Chem. Solids 59, 1241 (1998).
    [8] Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, and F.H. Yang,
    “Luminescence Emission Originating from Nitrogen Doping of β-Ga2O3
    Nanowires”, Phys Rev B 69, 075304 (2004).
    [9] Y.C. Hong, C.U. Bang, D.H. Shih, and H.S. Uhm, “”, Chem. Phys. Lett. 413,
    454 (2005).
    [10] T. Harwig, and F. Kellendouk, “Some Observations on Photo-Luminescence of
    Doped Beta-GalliumSesquiOxide”, J. Solid State Chem. 24, 255 (1978).
    [11] D.P. Yu, J.L. Bubendorff, J.F. Zhou, Y.L. Wang, M. Troyon, Solid State
    Commun. 124, 417 (2002).
    Chapter8
    [1] A. Imamoglu, and Y. Yamamoto, “Turnstile Device for Heralded Single Photons
    - Coulomb-Blockade of Electron and Hole Tunneling in Quantum-Cconfined
    p-i-n Heterojunctions”, Phys. Rev. Lett. 72, 210 (1994).
    [2] M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess,
    and R.E. Smalley, “Single-Electron Transport in Ropes of Carbon Nanotubes”,
    Science 275, 1922 (1997).
    [3] T. Junno, S.B. Carlsson, H.Q. Xu, L. Samuelson, A.O. Orlov, and G.L.
    Snider, “Single-Electron Tunneling Effects in a Metallic Double Dot Device”,
    Appl. Phys. Lett. 80, 667 (2002).
    [4] S. Mangal, S. Adhikari, and P. Banerji, “Aluminum/Polyaniline/GaAs
    Metal-Insulator-Semiconductor Solar Cell: Effect of Tunneling on Device
    Performance”, Appl. Phys. Lett. 94, 223509 (2009).
    [5] W. Lu, and C.M. Lieber, “Nanoelectronics from the Bottom Up”, Nature Mater.
    6, 841 (2007).
    [6] J.F. Conley, L. Stecker, and Y. Ono, “Directed Integration of ZnO Nanobridge
    Devices on a Si Substrate”, Appl. Phys. Lett. 87, 223114 (2005).
    [7] Y.F. Lin, W.B. Jian, C.P. Wang, Y.W. Suen, Z.Y. Wu, F.R. Chen, J.J. Kai, and J.J.
    Lin, “Contact to ZnO and Intrinsic Resistances of Individual ZnO Nanowires
    with a Circular Cross Section”, Appl. Phys. Lett. 90, 223117 (2007).
    [8] M. Sakurai, Y.G. Wang, T. Uemura, and M. Aono, “Electrical Properties of
    Individual ZnO Nanowires”, Nanotechnology 20, 155203 (2009).
    [9] Z.H. Zhong, F. Qian, D.L. Wang, and C.M. Lieber, “Synthesis of p-type Gallium
    Nitride Nanowires for Electronic and Photonic Nanodevices”, Nano Lett. 3, 343
    (2003).
    [10] T.H. Kim, S.Y. Lee, N.K. Cho, S.H. Keong, H.J. Choi, S.W. Jung, and S.K.
    Lee, “Dielectrophoretic Alignment of Gallium Nitride Nanowires (GaN NWs)
    for Use in Device Applications”, Nanotechnology 17, 3394 (2006).
    [11] M.A. Zimmler, J.M. Bao, I. Shalish, W. Yi, J. Yoon, V. Narayanamurti, and F.
    Capasso, “Electroluminescence from Single Nanowires by Tunnel Injection: an
    Experimental Study”, Nanotechnology 18, 235205 (2007).
    [12] M.S. Islam, S. Sharma, T.I. Kamins, and R.S. Williams, “Ultrahigh-Density
    Silicon Nanobridges Formed Between Two Vertical Silicon Surfaces”,
    Nanotechnology 15, L5 (2004).
    [13] R.R. He, D. Gao, R. Fan, A.I. Hochbaum, C. Carraro, R. Maboudian, and P.
    Yang, “Si Nanowire Bridges in Microtrenches: Integration of Growth into
    Device Fabrication”, Adv. Mater. 17, 2098 (2005).
    [14] A. Chaudhry, V. Ramamurthi, E. Fong, and M.S. Islim, “Ultra-Low Contact
    Resistance of Epitaxially Interfaced Bridged Silicon Nanowires”, Nano Lett. 7,
    1536 (2007).
    [15] A. Datta, G. Sinha, S.K. Panda, and A. Patra, “Growth, Optical, and Electrical
    Properties of In2S3 Zigzag Nanowires”, Cryst. Growth Des. 9, 427 (2009).
    [16] Y. Cui, and C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled
    Using Silicon Nanowire Building Blocks”, Science 291, 851 (2001).
    [17] H. Kind, H.Q. Yan, B. Messer, M. Law, and P.D. Yang, “Nanowire Ultraviolet
    Photodetectors and Optical Switches”, Adv. Mater. 14, 158 (2002).
    [18] Q.H. Li, Y.X. Liang, Q. Wan, and T.H. Wang, “Oxygen Sensing
    Characteristics of Individual ZnO Nanowire Transistors”, Appl. Phys. Lett.
    85, 6389 (2004).
    [19] W.I. Park, J.S. Kim, G.C. Yi, M.H. Bae, and H.J. Lee, “Fabrication and
    Electrical Characteristics of High-Performance ZnO Nanorod
    Field-Effect Transistors”, Appl. Phys. Lett. 85, 5052 (2004).
    [20] P.X. Gao, J. Liu, B.A. Buchine, B. Weintraub, Z.L. Wang, and J.L. Lee,
    “Bridged ZnO Nanowires Across Trenched Electrodes”, Appl. Phys. Lett. 91,
    142108 (2007).
    [21] R. Agarwal, “Heterointerfaces in Semiconductor Nanowires”, Small 4, 1872
    (2008).
    [22] H.H. Tippins, “Optical Absorption and Photoconductivity in Band Edge of
    Beta-Ga2O3”, Phys. Rev. 140, A316 (1965).
    [23] X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, and J.J. Du,
    “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters”,
    Chem. Phys. Lett. 328, 5 (2000).
    [24] Z.S. Li, C. de Groot, and J.H. Moodera, “Gallium Oxide as an Insulating
    Barrier for Spin-Dependent Tunneling Junctions”, Appl. Phys. Lett. 77, 3630
    (2000).
    [25] T. Miyata, T. Nakatani, and T. Minami, “Manganese-Activated Gallium
    Oxide Electroluminescent Phosphor Thin Films Prepared Using Various
    Dposition Methods”, Thin Solid Films 373, 145 (2000).
    [26] N.D. Cuong, Y.W. Park, and S.G. Yoon, “Microstructural and Electrical
    Properties of Ga2O3 Nanowires Grown at Various Temperatures by
    Vapor-Liquid-Solid Technique”, Sens. Actuators B 140, 240 (2009).
    [27] C.H. Liang, G.W. Meng, G.Z. Wang, Y.W. Wang, L.D. Zhang, and S.Y. Zhang,
    “Catalytic Synthesis and Photoluminescence of Beta-Ga2O3 Nanowires”,Appl.
    Phys. Lett. 78, 3202 (2001).
    [28] Y. Huang, S.L. Yue, Z.L. Wang, Q. Wang, C.Y. Shi, Z. Xu, X. D. Bai, C.C.
    Tang, and C.Z. Gu, “Preparation and Electrical Properties of Ultrafine Ga2O3
    Nanowires”, J. Phys. Chem. B 110, 796 (2006).
    [29] P.C. Chamg, Z. Fan, W.Y. Tseng, A. Rajagopal, and J.G. Lu, “β-Ga2O3
    Nanowires: Synthesis, Characterization, and p-channel Field-Effect
    Transistor”, Appl. Phys. Lett. 87, 222102 (2005).
    [30] L.L. Liu, M.K. Li, D.Q. Yu, J. Zhang, H. Zhang, C. Qian, and Z.
    Yang, “Fabrication and Characteristics of N-doped Beta-Ga2O3 Nanowires”,
    Appl.Phys A 98, 831 (2010).
    [31] J. Zhang, F.H. Jiang, and L.D. Zhang, “Fabrication, Structural
    Characterization and Optical Properties of Semiconducting Gallium
    Oxide Nanobelts”, Phys. Lett. A 322, 363 (2004).
    [32] Z.R. Dai, Z.W. Pan, and Z.L. Wang, “Gallium Oxide Nanoribbons and
    Nanosheets”, J. Phys. Chem. B 106, 902 (2002).
    [33] R. Roy, V.G. Hill, and E.F. Osborn, “Polymorphism of Ga2O3 and the
    System Ga2O3-H2O”, J. Am. Chem. Soc. 74, 719 (1952).
    [34] F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, and C.M. Lieber, “Gallium
    Nitride-Based Nanowire Radial Heterostructures for Nanophotonics”, Nano
    Lett. 4, 1975 (2004).
    [35] C.H. Hsieh, L.J. Chou, G.R. Lin, Y. Bando, and D. Golberg, “Nanophotonic
    Switch: Gold-in-Ga2O3 Peapod Nanowires”, Nano Lett. 8, 3081 (2008).
    [36] E. Auger, A. Lugstein, S. Löffler, Y.J. Hyun, W. Brezna, E. Bertagnolli, and P.
    Pongratz, “Ultrafast VLS Growth of Epitaxial β- Ga2O3 Nanowires”,
    Nanotechnology 20, 434017 (2009).
    [37] H.J. Chun, Y.S. Choi, S.Y. Bae, H.W. Seo, S.J. Hong, J. Park, and H. Yang,
    “Controlled Structure of Gallium Oxide Nanowires”, J. Phys. Chem. B 107,
    9042 (2003).
    [38] C.J. Novotny, E.T. Yu, and P.K.L. Yu, “InP Nanowire/Polymer Hybrid
    Photodiode”, Nano Lett. 8, 775 (2008).
    [39] C.L. Kuo, and M.H. Huang, “The Growth of Ultralong and Highly Blue
    Luminescent Gallium Oxide Nanowires and Nanobelts, and Direct Horizontal
    Nanowire Growth on Substrates”, Nanotechnology 19, 155604 (2008).
    [40] J. Zhou, Y.D. Gu, Y.F. Hu, W.J. Mai, P.H. Yeh, G. Bao, A.K. Sood, D.L. Polla,
    and Z.L. Wang, “Gigantic Enhancement in Response and Reset Time of ZnO
    UV Nanosensor by Utilizing Schottky Contact and Surface Functionalization”,
    Appl. Phys. Lett. 94, 191103 (2009).
    [41] L. Fu, Y.Q. Liu, P. Hu, K. Xiao, G. Yu, and D.B. Zhu, “Ga2O3 Nanoribbons:
    Synthesis, Characterization, and Electronic Properties”, Chem. Mater. 15,
    4287 (2003).
    [42] K. Fukami, K. Kobayashi, T. Matsumoto, Y.L. Kawamura, T. Sakka, and Y.H.
    Ogata, “Electrodeposition of Noble Metals into Ordered Macropores in p-Type
    Silicon”, J. Electrochem. Soc. 155, D443 (2008).
    [43] Z.Y. Zhang, K. Yao, Y. Liu, C. Jin, K. Xiang, Q. Chen, and L.M. Peng,
    “Quantitative Analysis of Current-Voltage Characteristics of Semiconducting
    Nanowires: Decoupling of Contact Effects”, Adv. Funct. Mater. 17, 2478
    (2007).
    [44] C.C. Huang, B.D. Pelatt, and J.F. Conley “Directed Integration of ZnO
    Nanobridge Sensors Using Photolithographically Patterned Carbonized
    Photoresist”, Nanotechnology 21, 195307 (2010).
    [45] Y.B. Li, A. Paulsen, I. Yamada, Y. Koide, and J.J. Delaunay, “Bascule
    Nanobridges Self-Assembled with ZnO Nanowires as Double Schottky
    Barrier UV Switches”, Nanotechnology 21, 295502 (2010).
    [46] S.M. Peng, Y.K. Su, L.W. Ji, C.Z. Wu, W.B. Cheng, and W.C. Chao, “ZnO
    Nanobridge Array UV Photodetectors”, J. Phys. Chem. C 114, 3204 (2010).
    [47] A.G. Milnes, and D.L. Feucht, “Heterojunctions and Metal- Semiconductor
    Junctions”, Academic, New York, 1972.
    [48] C.T. Sah, R.N. Noyce, and W. Shockley, “Carrier Generation and
    Recombination in p-n Junctions and p-n Junction Characteristics”, Proc. IRE
    45, 1228 (1957).
    [49] D.P. Norton, M. lvill, Y. Li, Y.W. Kwon, J.M. Erie, H.S. Kim, K. Ip, S.J.
    Pearton, Y.W. Heo, S. Kim, B.S. Kang, F. Ren, A.F. Hebard, and J. Kelly,
    “Charge carrier and spin doping in ZnO thin films”, Thin Solid Films 496,
    160 (2006).
    [50] H.C. Casey, J. Muth, S. Krishnankutty, and J.M. Zavada, “Dominance of
    Tunneling Current and Band Filling in InGaN/AlGaN Double
    Heterostructure Blue Light-Emitting Diodes”, Appl. Phys. Lett. 68, 2867
    (1996).
    [51] J.M. Shah, Y.L. Li, T. Gessmann, and E.F. Schubert, “Experimental Analysis
    and Theoretical Model for Anomalously High Ideality Factors (n >> 2.0) in
    AlGaN/GaN p-n Junction Diodes”, J. Appl. Phys. 94, 2627
    (2003).
    [52] F. Calle, E. Monroy, F.J. Sanchez, E. Munoz, B. Beaumont, S. Haffouz, M.
    Leroux, and P. Gibart, “Analysis of the Visible and UV
    Electroluminescence in Homojunction GaN LED's”, MRS Interent J.
    Nitride Semicond. Res. 3, 24 (1998).
    [53] J.B. Fedison, T.P. Chow, H. Lu, and I.B. Bhat, “Electrical Characteristics of
    Magnesium-Doped Gallium Nitride Junction Diodes”, Appl. Phys. Lett. 72,
    2841 (1998).
    [54] J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, and Y.D.
    Zheng, “Electroluminescent and Transport Mechanisms of
    n-ZnO/p-Si Heterojunctions”, Appl. Phys. Lett. 88, 182112 (2006).
    [55] Y.I. Alivov, J.E. Van Nostrand, D.C. Look, M.V. Chukichev, and B.M. Ataev,
    “Observation of 430 nm Electroluminescence from ZnO/GaN Heterojunction
    Light-Emitting Diodes”, Appl. Phys. Lett. 83, 2943 (2003).
    [56] I.S. Jeong, J.H. Kim, and S. Im, “Ultraviolet-Enhanced Photodiode Employing
    n-ZnO/p-Si Structure”, Appl. Phys. Lett. 83, 2946 (2003).
    [57] T. Harwig, and F. Kellendonk, “Some Observations on
    Photo-Luminescence of Doped Beta-GalliumSwsquiOxide ”, J. Solid State
    Chem. 24, 255 (1978).
    [58] Y.P. Song, H.Z. Zhang, C. Lin, Y.W. Zhu, G.H. Li, F.H. Yang, and D.P. Yu,
    “Luminescence Emission Originating from Nitrogen Doping of Beta-Ga2O3
    Nanowires”, Phys. Rev. B 69, 075304 (2004).
    [59] L. Binet, and D. Gourier, “Origin of the Blue Luminescence of Beta-Ga2O3”,
    J. Phys. Chem. Solids 59, 1241 (1998).
    [60] Y.S. Park, C.M. Park, J.W. Lee, H.Y. Cho, T.W. Kang, K.H. Yoo, M.S. Son,
    and M.S. Han, “Electrical Transport Properties of a Nanorod GaN p-n
    Homojunction Grown by Molecular-Beam Epitaxy”, J. Appl. Phys. 103,
    066107 (2008).
    [61] J.R. Kim, H. Oh, H.M. So, J.J. Kim, J. Kim, C.J. Lee, and S.C. Lyu, “Schottky
    Diodes Based on a Single GaN Nanowire”, Nanotechnology 13, 701 (2002).
    [62] P. Feng, Q. Wan, and T.H. Wang, “Contact-Controlled Sensing Properties of
    Flowerlike ZnO Nanostructures”, Appl. Phys. Lett. 87, 213111 (2005).
    Chapter9
    [1] A.B. Greytak, C.J. Barrelet, Y. Li, and C.M. Lieber, “Semiconductor Nanowire
    Laser and Nanowire Waveguide Electro-Optic Modulators”, Appl. Phys. Lett.
    87, 151103 (2005).
    [2] C. Li, D.H. Zhang, X.L. Liu, S. Han, T. Tang, J. Han, and C.W. Zhou, “In2O3
    Nanowires as Chemical Sensors”, Appl. Phys. Lett. 82, 1613 (2003).
    [3] C. Thelander, T. Martensson, M.T. Bjork, B.J. Ohisson, M.W. Larsson, L.R.
    Wallenberg, and L. Samuelson, “Single-Electron Transistors in Heterostructure
    Nanowires”, Appl. Phys. Lett. 83, 2052 (2003).
    [4] D. Zhang, C. Li, X. Liu, S. Han, T. Tang, and C. Zhou, “Doping Dependent NH3
    Sensing of Indium Oxide Nanowires”, Appl. Phys. Lett. 83, 1845 (2003).
    [5] E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang, “Stable and
    Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts”,
    Appl. Phys. Lett. 81, 1869 (2002).
    [6] L. Wang, K.Z. Chen, and L.F. Dong, “Synthesis of Exotic Zigzag
    ZnO Nanoribbons and Their Optical, Electrical Properties”, J. Phys. Chem. C
    114, 17358 (2010).
    [7] N. Lu, Q.H. Wan, and J. Zhu, “Surface Structure of Zigzag SnO2 Nanobelts”,
    J. Phys. Chem. Lett. 1, 1468 (2010).
    [8] Z.P. Xu, and M.J. Buehler, “Hierarchical Graphene Nanoribbon Assemblies
    Feature Unique Electronic and Mechanical Properties”, Nanotechnology 20,
    375704 (2009).
    [9] K. Ryu, D. Zhang, and C. Zhou, “High-Performance Metal Oxide
    Nanowire Chemical Sensors with Integrated Micromachined Hotplates”,
    Appl.Phys. Lett. 92, 093111 (2008).
    [10] D.S. Kong, J.C. Randel, H.L. Peng, J.J. Cha, S. Meister, K.J. Lai, Y.L. Chen,
    Z.X. Shen, H.C. Manoharan, and Y. Cui, “Topological Insulator Nanowires and
    Nanoribbons”, Nano Lett. 10, 329 (2010).
    [11] H.A. Chen, H. Wang, X.H. Zhang, C.S. Lee, and S.T. Lee, “Wafer-Scale
    Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled
    Turning Angles”, Nano Lett. 10, 864 (2010).
    [12] L. Kreuzer, and C. Patel, “Nitric Oxide Air Pollution: Detection by
    Optoacoustic Spectroscopy”, Science 173, 182 (1971).
    [13] C.Y. Lin, Y.Y. Fang, C.W. Lin, J.J. Tunney, and K.C. Ho, “Fabrication of NOx
    Gas Sensors Using In2O3–ZnO Composite Films ”, Sens. Actuators B 146, 28
    (2010).
    [14] H.S. Kim, S.O. Hwang, Y. Myung, J. Park, S.Y. Bae, and J.P. Ahn,
    “Three-Dimensional Structure of Helical and Zigzagged Nanowires Using
    Electron Tomography”, Nano Lett. 8, 551 (2008).
    [15] A. Othonos, M. Zervos, and C. Christofides, “Carrier Dynamics in β-Ga2O3
    Nanowires”, J. Appl. Phys. 108, 124302 (2010).
    [16] L.W. Chang, C.F. Li, Y.T. Hsieh, C.M. Liu, Y.T. Cheng, J.W. Yeh, and H.C.
    Shih, “Ultrahigh-Density β-Ga2O3/N-doped -β-Ga2O3 Schottky and p-n
    Nanowire Junctions: Synthesis and Electrical Transport Properties”, J.
    Electrochem. Soc. 158, D136 (2011).
    [17] F. Shi, S. Zhang, and C. Xue, “Influence of Annealing Time on Microstructure
    of One-Dimensional Ga2O3 Nanorods”, J. Alloys and Compounds 498, 77
    (2010).
    [18] C.R. Kingsley, T.J. Whitaker, A.T.S. Wee, R.B. Jackman, and J.S. Foord,
    “Development of Chemical Beam Epitaxy for the Deposition of Gallium
    Nitride”, Mater. Sci. Eng. B 29, 78 (1995).
    [19] T.D. Veal, I. Mahboob, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff, J.
    Furthmüller, and F. Bechstedt, “Core-Level Photoemission Spectroscopy of
    Nitrogen Bonding in GaNxAs1−x Alloys”, Appl. Phys. Lett. 85, 1550 (2004).
    [20] H. Li, C.S. Xue, H.Z. Zhuang, J.H. Chen, Z.Z. Yang, L.X. Qin, Y.L. Huang,
    and D.D.Zhang, “Synthesis and Characterization of GaN Nanowires with
    Tantalum Catalyst”, Mater. Chem. Phys. 109, 249 (2008).
    [21] S.W. King, E.P. Carison, and R.J. Therrien, “X-ray Photoelectron Spectroscopy
    Analysis of GaN/(0001)AlN and AlN/(0001)GaN Growth Mechanisms”, J.
    Appl. Phys. 86, 5584 (1999).
    [22] J. Tauc, “Optical Properties of Solid”, Vol. 22, F. Abeles, Editor, p. 903, North
    Holland, Amsterdam (1970).
    [23] C.C. Liu, J.H. Li, C.C. Chang, Y.C. Chao, H.F. Meng, S.F. Horng, C.H. Huang,
    and T.C. Meng, “Selective Real-Time Nitric Oxide Detection by Functionalized
    Zinc Oxide”, J. Phys. D: Appl. Phys. 42, 155105 (2009).
    [24] X.Y. Kong, Y. Ding, R. Yang, and Z.L. Wang, “Single-Crystal Nanorings
    Formed by Epitaxial Self-Coiling of Polar Nanobelts”, Science 303, 1348
    (2004).
    [25] H. Wang, J.C. Wu, Y. Shen, G. Li, Z. Zhang, G. Xing, D. Guo, D. Wang, Z.
    Dong, and T. Wu, “CrSi2 Hexagonal Nanowebs”, J. Am. Chem. Soc. 132,
    15875 (2010).
    [26] S.C. Navale, V. Ravi, I.S. Mulla, S.W. Gosavi, and S.K. Kulkarni, “Low
    Temperature Synthesis and NOx Sensing Properties of Nanostructured
    Al-doped ZnO”, Sens. Actuators B 126, 382 (2007).
    [27] M. Kaur, S.V.S. Chauhan, S. Sinha, M. Bharti, R. Mohan, S.K. Gupta, and J.V.
    Yakhmi, “Application of Aligned ZnO Nanowires/Nanobelts as a Room
    Temperature NO Gas Sensor”, J. Nanosci. Nanotechnol. 9, 5293 (2009).
    [28] C. Y. Lin, Y.Y. Fang, C.W. Lin, J. Tunney, and K.C. Ho, “Fabrication of NO(x)
    Gas Sensors Using In2O3-ZnO Composite Films”, Sens. Actuators B 146, 28
    (2010).
    [29] D.L. Guo, X. Huang, G.Z. Xing, Z. Zhang, G.P. Li, M. He, H. Zhang, H. Chen,
    and T. Wu, “Metal-Layer-Assisted Coalescence of Au Nanoparticles and Its
    Effect on Diameter Control in Vapor-Liquid-Solid Growth of Oxide
    Nanowires”, Phys. Rev. B 83, 045403 (2011).
    [30] J. Yu, S.J. Ippolito, W. Wlodarski, M. Strano, and K. Kakantar, “Nanorod
    Based Schottky Contact Gas Sensors in Reversed Bias Condition”,
    Nanotechnology 21, 265502 (2010).
    [31] P.B. M. Archer, A.V. Chadwick, J.J. Miasik, M. Tamizi, and J.D. Wright,
    “Kinetic Factors in the Response of Organometallic Semiconductor Gas
    Sensors”, Sens. Actuators 16, 379 (1989).
    [32] A. Wilson, J.D. Wright, A.V. Chadwick, “A Microprocessor-Controlled
    Nitrogen Dioxide Sensing System”, Sens. Actuators B 4, 499 (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE