簡易檢索 / 詳目顯示

研究生: 蔡承祐
Tsai, Cheng-Yu
論文名稱: 菱形多面體在動態幾何中的應用
Applications of Rhombic Polyhedron in Dynamic Geometry
指導教授: 全任重
Chuan, Jen-Chung
朱家杰
Chu, Chia-Chieh
口試委員: 李華倫
Li, Hua-Lun
李明恭
Li, Ming-Kung
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 30
中文關鍵詞: 菱形十二面體菱形二十面體菱形三十面體菱形多面體
外文關鍵詞: rhombic dodecahedron, rhombic icosahedron, rhombic triacontahedron, rhombic polyhedron
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 菱形是一種具有很多特殊性質的圖形,由菱形組成的多面體自然有很多有趣的應用。本文重點研究了三種菱形多面體,即菱形十二面體、菱形二十面體和菱形三十面體,並探討了以下主題:
    1. 以菱形多面體的拼圖的著色。
    2. 菱形多面體的分割。
    3. 菱形多面體與其分割的連桿結構。


    The rhombus is a kind of figure with many special properties, and the polyhedron composed of rhombuses naturally has many interesting applications. This paper focus on three rhombic polyhedra: the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron and explores the following topics :
    1. Colorings of the "Jupiter", a 3D jigsaw puzzle based on the
    rhombic polyhedron
    2. Dissection-assembly of the rhombic polyhedron
    3. Linkage associated with dissection-assembly of the rhombic polyhedron

    1 Introduction 4 1.1 Research Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Rhombic Dodecahedron, Rhombic Triacontahedron and Rhombic Icosahedron . . . . . . . . . . 4 2 Jupiter, a Puzzle Based on the Rhombic Triacontahedron 6 2.1 The Third Stellation of Rhombic Dodecahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Colorings of the Puzzle Based on the Third Stellation of Rhombic Dodecahedron . . . . . 9 2.2 The Puzzle Based on the Rhombic Triacontahedron . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Colorings of Jupiter of Rhombic Triacontahedron . . . . . . . . . . . . . . . . . . . . . . 14 3 Dissection of the Rhombic Polyhedron 20 3.1 Dissection-Assembly of the Rhombic Dodecahedron into 4 Rhombohedra . . . . . . . . . . . . . 20 3.2 Dissection-Assembly of the Rhombic Icosahedron into 10 Rhombohedra . . . . . . . . . . . . . . 21 3.3 Dissection-Assembly of the Rhombic Triacontahedron into 20 Rhombohedra . . . . . . . . . . . 24 4 Linkage Associated with the Rhombic Polyhedron 26 4.1 Assembly of 4 Rhombohedra Linkages to form the Rhombic Dodecahedron Linkage . . . . . . . 26 4.2 Assembly of 10 Rhombohedra Linkages to form the Rhombic Icosahedron Linkage . . . . . . . . 27 4.3 Assembly of 20 Rhombohedra Linkages to form the Rhombic Triacontahedron Linkage . . . . . . 28 References 30

    [1] H. Martyn Cundy \& A. P. Rollett, Mathematical Model, Oxford University Press, 1961

    [2] KANAYAMA, R. Bibliography on linkage. Tohoku Mathematical Journal, First Series, 1933, 37: 294-319.

    [3] Stewart T. Coffin, The Puzzling World of Polyhedral Dissections, Oxford University Press, 1974

    [4] Stewart T. Coffin, Geometric puzzle design, A K Peters, Wellesley Massachusetts, 2007

    QR CODE