研究生: |
林昭男 Lin, Chao-Nan. |
---|---|
論文名稱: |
低一氧化碳選擇率、高熱穩定性的金、鈰修飾銅鋅觸媒甲醇-過氧化氫蒸氣重組之研究 Low CO Selectivity and High Thermal Durability of Copper Zinc Catalyst with Gold and Cerium Promoters in the Hydrogen Peroxide-Oxidative Steam Reforming of Methanol |
指導教授: |
黃鈺軫
Huang, Yuh-Jeen |
口試委員: |
葉君棣
Yeh, Chuin-Tih 汪成斌 Wang, Chen-Bin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 114 |
中文關鍵詞: | 金 、鈰 、雙氧水-甲醇蒸氣氧化重組 、低CO選擇率 、熱穩定性 |
外文關鍵詞: | gold, cerium, H2O2-OSRM, low CO selectivity, thermal durability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以共沉澱法製備不同比例的鈰 (Ce = 10、20、30wt%) 修飾銅鋅複合型觸媒,並以三種不同的甲醇重組反應測試其活性、選擇性及穩定性,分別為甲醇部分氧化(POM)、甲醇水蒸氣重組(SRM)和雙氧水系統的甲醇蒸氣氧化重組(H2O2-OSRM)反應,接著經由一些觸媒鑑定 (XRD、ICP-MS、H2-TPR、N2O吸附、BET) 探討添加後物理特性的改變。鈰的添加在SRM及OSRM中不僅能有效降低一氧化碳的選擇率(>275°C,降低30-50%),還能改善銅鋅觸媒熱穩定性不佳(失活常數: 0.528 → 0.273 hr-1(SRM),0.542 → 0.230 hr-1(H2O2-OSRM))的問題。
雖然CCe10Z有效抑制了一氧化碳的產生,並增強了穩定性,但同時也造成活性的損失,為了能增加反應活性,本研究進一步以沉積沉澱法,添加不同比例的金(Au = 0.5、1、3、5wt%)修飾銅鈰鋅複合觸媒,並以TEM、XRD觀察金的顆粒大小。研究結果發現,金的顆粒大小會隨著添加比例而逐漸變大,反應最佳的觸媒是Au1CCe10Z,在275°C時, H2O2-OSRM中甲醇轉換率達97% 、一氧化碳選擇率達2.6%、氫氣產率達160 mmole*s-1kg-1,H2O2-OSRM和SRM同為液體進樣系統,能有效改善燃料電池體積較大的問題,在反應測試中,H2O2-OSRM系統因含有氧氣,因此甲醇轉換率相較於SRM系統提升了12%,此為H2O2-OSRM系統的一大優勢。
In this study, copper-zinc complex with different amounts of cerium (Ce = 10, 20, 30wt%) were prepared by the coprecipitation method. In activity, selectivity and thermal durability were tested by methanol reforming reactions including partial oxidation of methanol (POM), steam reforming of methanol (SRM) and hydrogen peroxide-oxidative steam reforming of methanol (H2O2-OSRM) reactions. Their physicochemical properties were characterized by XRD, ICP-MS, H2-TPR, BET and N2O chemisorption. The experimental results show that addition of cerium not only reduced the selectivity of carbon monoxide (> 275°C, reduce 30-50%) but also improved the poor thermal stability of copper-zinc catalyst in SRM (deactivation constant: 0.528 → 0.273 hr-1) and H2O2-OSRM reaction (deactivation constant: 0.542 → 0.230 hr-1).
Although CCe10Z effectively reduced the selectivity of carbon monoxide and enhanced their thermal durability, but loss the reforming reactivity. To increase the reactivity, CCe10Z with various amounts of gold (Au = 0.5, 1, 3, 5 wt%) were synthesized by deposition precipitation method. The Au particle sizes were characterized by XRD and TEM. The optimize performance of catalyst is Au1CCe10Z which achieves 97% methanol conversion, 160 mmole*s-1kg-1 H2 yield, and 2.6% CO selectivity. H2O2-OSRM and SRM were liquid injection system which could reduce the volume of fuel cell. In the reaction test, H2O2-OSRM system performed 12% improvement in methanol conversion over SRM system due to the oxygen contained which was a major benefit in the H2O2-OSRM system.
[1] M. Madej-Lachowska, M. Kulawska, J. Sloczynski, Methanol as a high purity hydrogen source for fuel cells: A brief review of catalysts and rate expressions, Chem Process Eng-Inz, 38 (2017) 147-162.
[2] T.R. Ralph, G.A. Hards, Powering the cars and homes of tomorrow, Chem Ind-London, (1998) 337-342.
[3] M. Ozawa, M. Kimura, A. Isogai, Thermal-Stability and Characterization of Gamma-Al2O3 Modified with Rare-Earths, J Less-Common Met, 162 (1990) 297-308.
[4] E. Moretti, M. Lenarda, L. Storaro, A. Talon, T. Montanari, G. Busca, E. Rodríguez-Castellón, A. Jiménez-López, M. Turco, G. Bagnasco, R. Frattini, One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation, Applied Catalysis A: General, 335 (2008) 46-55.
[5] L.F. Liotta, G. Di Carlo, A. Longo, G. Pantaleo, A.M. Venezia, Support effect on the catalytic performance of Au/Co3O4-CeO2 catalysts for CO and CH4 oxidation, Catal Today, 139 (2008) 174-179.
[6] B.A. Lenite, C. Galletti, S. Specchia, Studies on Au catalysts for water gas shift reaction, Int J Hydrogen Energ, 36 (2011) 7750-7758.
[7] C. Pojanavaraphan, A. Luengnaruemitchai, E. Gulari, Effect of catalyst preparation on Au/Ce1-xZrxO2 and Au-Cu/Ce1-xZrxO2 for steam reforming of methanol, Int J Hydrogen Energ, 38 (2013) 1348-1362.
[8] C. Pojanavaraphan, A. Luengnaruemitchai, E. Gulari, Effect of support composition and metal loading on Au catalyst activity in steam reforming of methanol, Int J Hydrogen Energ, 37 (2012) 14072-14084.
[9] C. Pojanavaraphan, A. Luengnaruemitchai, E. Gulari, Catalytic activity of Au-Cu/CeO2-ZrO2 catalysts in steam reforming of methanol, Appl. Catal. A-Gen., 456 (2013) 135-143.
[10] S. Sa, H. Silva, L. Brandao, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming-A review, Appl. Catal. B-Environ., 99 (2010) 43-57.
[11] C. Stone, A.E. Morrison, From curiosity to "power to change the world((R))", Solid State Ionics, 152 (2002) 1-13.
[12] R.S.S. R. S. Khurmi, Scilab Textbook Companion for Materials Science, 2016.
[13] Fuel Cell Handbook (Sixth Edition), EG&G Technical Services, Inc. ,Science Applications International Corporation Morgantown, West Virginia, 2002.
[14] A.D. James Larminie, Fuel Cell Systems Explained, Second ed., John Wiley & Sons2002.
[15] T.R. Ralph, M.P. Hogarth, Catalysis for Low Temperature Fuel Cells, Platin Met Rev, 46 (2002) 117-135.
[16] T.R. Ralph, Hards, G. A., Powering the cars and homes of tomorrow, Chemistry&Industry, 9(1998) 79-84.
[17] U.G. Bossel, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne, (1999) 79-84.
[18] U. Eberle, M. Felderhoff, F. Schuth, Chemical and Physical Solutions for Hydrogen Storage, Angew Chem Int Edit, 48 (2009) 6608-6630.
[19] J. Zieger, Hydrogen energy progr., (1994) 1427-1437.
[20] H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne, (1999) 159.
[21] D. Reister, Strobl, W., Hydrogen energy progress IX, (1992) 1271-1355.
[22] K. Ueoka, S. Miyauchi, Y. Asakuma, T. Hirosawa, Y. Morozumi, H. Aoki, T. Miura, An application of a homogenization method to the estimation of effective thermal conductivity of a hydrogen storage alloy bed considering variation of contact conditions between alloy particles, Int J Hydrogen Energ, 32 (2007) 4225-4232.
[23] P. Vermeulen, E.F.M.J. van Thiel, P.H.L. Notten, Ternary MgTiX-Alloys: A promising route towards low-temperature, high-capacity, hydrogen-storage materials, Chem-Eur J, 13 (2007) 9892-9898.
[24] U. Eberle, G. Arnold, R. von Helmolt, Hydrogen storage in metal-hydrogen systems and their derivatives, J Power Sources, 154 (2006) 456-460.
[25] B. Bogdanovic, R.A. Brand, A. Marjanovic, M. Schwickardi, J. Tolle, Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials, J Alloy Compd, 302 (2000) 36-58.
[26] B. Bogdanovic, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J Alloy Compd, 253 (1997) 1-9.
[27] S.T. Yong, C.W. Ooi, S.P. Chai, X.S. Wu, Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes, Int J Hydrogen Energ, 38 (2013) 9541-9552.
[28] J.P. Breen, J.R.H. Ross, Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts, Catal Today, 51 (1999) 521-533.
[29] S. Patel, K.K. Pant, Hydrogen production by oxidative steam reforming of methanol using ceria promoted copper-alumina catalysts, Fuel Process Technol, 88 (2007) 825-832.
[30] A.J. Appleby, Foulkes, F.R., Fuel Cell Handbook, Van Nostrand,New York, 1989.
[31] D.S. Watkins, Blomen, L.J.M.J., Fuel Cell Systems, Plenum Press, New York,, 1993.
[32] J. Zieger, Hydrogen energy progress, 1994.
[33] B. Lindstrom, L.J. Pettersson, Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications, Int J Hydrogen Energ, 26 (2001) 923-933.
[34] J.R. Rostrup-Nielsen, Christensen, T.S., and Dybkjaer, I., Steam reforming of liquid hydrocarbons, Stud. Surf. Sci. Catal. 113 (1998) 81–95.
[35] T. Takahashi, M. Inoue, T. Kai, Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys, Appl. Catal. A-Gen., 218 (2001) 189-195.
[36] S. Velu, K. Suzuki, T. Osaki, Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides, Catal Lett, 62 (1999) 159-167.
[37] L.Y. Mo, X.M. Zheng, C.T. Yeh, Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures, Chem Commun, (2004) 1426-1427.
[38] M.L. Cubeiro, J.L.G. Fierro, Selective production of hydrogen by partial oxidation of methanol over ZnO-Supported palladium catalysts, J Catal, 179 (1998) 150-162.
[39] S. Schuyten, E.E. Wolf, Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming, Catal Lett, 106 (2006) 7-14.
[40] S. Velu, K. Suzuki, Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance, Top Catal, 22 (2003) 235-244.
[41] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3, J Catal, 219 (2003) 389-403.
[42] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix, Appl. Catal. B-Environ., 77 (2007) 46-57.
[43] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming, J Mol Catal A-Chem, 268 (2007) 185-194.
[44] B. Charles, Purpose in the Universe: A Search for Wholeness, Zygon, 1971.
[45] T. Shishido, M. Yamamoto, D.L. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation, Appl. Catal. A-Gen., 303 (2006) 62-71.
[46] J. Patt, D.J. Moon, C. Phillips, L. Thompson, Molybdenum carbide catalysts for water-gas shift, Catal Lett, 65 (2000) 193-195.
[47] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, A comparative study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal Today, 75 (2002) 157-167.
[48] J.B. Wang, S.C. Lin, T.J. Huang, Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria, Appl. Catal. A-Gen., 232 (2002) 107-120.
[49] G. Avgouropoulos, T. Ioannides, Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method, Appl. Catal. A-Gen., 244 (2003) 155-167.
[50] A.J. Dyakonov, Abatement of CO from relatively simple and complex mixtures - I. Oxidation on Pd-Ag/zeolite catalysts, Appl. Catal. B-Environ., 45 (2003) 241-255.
[51] B.T. Qiao, Y.Q. Deng, Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2, Chem Commun, (2003) 2192-2193.
[52] Y.F. Han, M. Kinne, R.J. Behm, Selective oxidation of CO on Ru/gamma-Al2O3 in methanol reformate at low temperatures, Appl. Catal. B-Environ., 52 (2004) 123-134.
[53] L.B. Hunt, F.M. Lever, Availability of Platinum Group Metals in Relation to Industrial Uses, Platinum Metals Rev., 1969, 13, (4), 126
[54] S.T. Liu, K. Takahashi, K. Uematsu, M. Ayabe, Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component, Appl. Catal. A-Gen., 277 (2004) 265-270.
[55] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts, Appl. Catal. B-Environ., 88 (2009) 490-496.
[56] C.Y. Huang, Y.M. Sun, C.Y. Chou, C.C. Su, Performance of catalysts CuO-ZnO-Al2O3, CuO-ZnO-Al2O3-Pt-Rh, and Pt-Rh in a small reformer for hydrogen generation, J Power Sources, 166 (2007) 450-457.
[57] C.Z. Yao, L.C. Wang, Y.M. Liu, G.S. Wu, Y. Cao, W.L. Dai, H.Y. He, K.N. Fan, Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts, Appl. Catal. A-Gen., 297 (2006) 151-158.
[58] A.M. Karim, T. Conant, A.K. Datye, Controlling ZnO morphology for improved methanol steam reforming reactivity, Phys Chem Chem Phys, 10 (2008) 5584-5590.
[59] E.S. Ranganathan, S.K. Bej, L.T. Thompson, Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts, Appl. Catal. A-Gen., 289 (2005) 153-162.
[60] T. Conant, A.M. Karim, V. Lebarbier, Y. Wang, F. Girgsdies, R. Schlogl, A. Datye, Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol, J Catal, 257 (2008) 64-70.
[61] B. Lindstrom, L.J. Pettersson, P.G. Menon, Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on gamma-alumina for methanol reforming for fuel cell vehicles, Appl. Catal. A-Gen., 234 (2002) 111-125.
[62] Y.Y. Liu, T. Hayakawa, T. Tsunoda, K. Suzuki, S. Hamakawa, K. Murata, R. Shiozaki, T. Ishii, M. Kumagai, Steam reforming of methanol over Cu/CeO2 catalysts studied in comparison with Cu/ZnO and Cu/Zn(Al)O catalysts, Top Catal, 22 (2003) 205-213.
[63] C.X. Qi, J.C. Amphlett, B.A. Peppley, Methanol steam reforming over NiAl and Ni (M) Al layered double hydroxides (M = Au, Rh, Ir) derived catalysts, Catal Lett, 104 (2005) 57-62.
[64] N. Iwasa, T. Mayanagi, N. Ogawa, K. Sakata, N. Takezawa, New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol, Catal Lett, 54 (1998) 119-123.
[65] P.H. Matter, D.J. Braden, U.S. Ozkan, Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts, J Catal, 223 (2004) 340-351.
[66] R. Burch, S.E. Golunski, M.S. Spencer, The role of hydrogen in methanol synthesis over copper-catalysts, Catal Lett, 5 (1990) 55-60.
[67] R. Burch, S.E. Golunski, M.S. Spencer, The role of copper and zinc-oxide in methanol synthesis catalysts, J Chem Soc Faraday T, 86 (1990) 2683-2691.
[68] C.C. Chen, M.S. Jeng, C.H. Leu, C.C. Yang, Y.L. Lin, S.C. King, S.Y. Wu, Low-level CO in hydrogen-rich gas supplied by a methanol processor for PEMFCs, Chem Eng Sci, 66 (2011) 5095-5106.
[69] J. Agrell, M. Boutonnet, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part II. Catalytic activity and reaction pathways, Applied Catalysis A: General, 253 (2003) 213-223.
[70] J. Agrell, M. Boutonnet, I. Melián-Cabrera, J. Fierro, Production of hydrogen from methanol over binary Cu/ZnO catalysts Part I. Catalyst preparation and characterisation, Applied Catalysis A: General, 253 (2003) 201-211.
[71] L. Alejo, R. Lago, M.A. Peña, J.L.G. Fierro, Partial oxidation of methanol to produce hydrogen over CuZn-based catalysts, Applied Catalysis A: General, 162 (1997) 281-297.
[72] T.J. Ahrens, Global earth physics, Washington, DC, 1995.
[73] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, Production of hydrogen via combined steam reforming of methanol over CuO–CeO2 catalysts, Catalysis Communications, 5 (2004) 231-235.
[74] G. Dutta, U.V. Waghmare, T. Baidya, M.S. Hegde, K.R. Priolkar, P.R. Sarode, Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2 compared to CeO2 or TiO2, Chem Mater, 18 (2006) 3249-3256.
[75] A. Gupta, U.V. Waghmare, M.S. Hegde, Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation, Chem Mater, 22 (2010) 5184-5198.
[76] S. Patel, K.K. Pant, Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol, Journal of Power Sources, 159 (2006) 139-143.
[77] H.S. Roh, K.W. Jun, W.S. Dong, S.E. Park, Y.S. Baek, Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane, Catalysis Letters, 74 (2001) 31-36.
[78] Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, Highly active copper/ceria catalysts for steam reforming of methanol, Applied Catalysis A: General, 223 (2002) 137-145.
[79] D. Srinivas, C.V.V. Satyanarayana, H.S. Potdar, P. Ratnasamy, Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol, Appl. Catal. A-Gen., 246 (2003) 323-334.
[80] A. Trovarelli, Structural and oxygen storage/release properties of CeO2-based solid solutions, Comment Inorg Chem, 20 (1999) 263-284.
[81] A.B. Kehoe, D.O. Scanlon, G.W. Watson, Role of lattice distortions in the oxygen storage capacity of divalently doped CeO2, Chem Mater, 23 (2011) 4464-4468.
[82] L. Qi, Q. Yu, Y. Dai, C.J. Tang, L.J. Liv, H.L. Zhang, F. Gao, L. Dong, Y. Chen, Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation, Appl. Catal. B-Environ., 119 (2012) 308-320.
[83] N. Liu, Y.X. Gao, W.D. Wang, W.X. Huang, Cu-Co composite oxides supported on multi-walled carbon nanotubes for catalytic removal of CO in a H2 rich stream, Chinese J Chem Phys, 27 (2014) 523-529.
[84] S.S. Sun, D.S. Mao, J. Yu, Z.Q. Yang, G.Z. Lu, Z. Ma, Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature, Catal Sci Technol, 5 (2015) 3166-3181.
[85] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal Today, 36 (1997) 153-166.
[86] M. Haruta, M. Date, Advances in the catalysis of Au nanoparticles, Appl. Catal. A-Gen., 222 (2001) 427-437.
[87] N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. Norskov, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J Catal, 223 (2004) 232-235.
[88] M. Manzoli, G. Avgouropoulos, T. Tabakova, J. Papavasiliou, T. Ioannides, F. Boccuzzi, Preferential CO oxidation in H2 rich gas mixtures over Au/doped ceria catalysts, Catal Today, 138 (2008) 239-243.
[89] A. Gazsi, T. Bansagi, F. Solymosi, Hydrogen formation in the reactions of methanol on supported Au catalysts, Catal Lett, 131 (2009) 33-41.
[90] N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Steam reforming of methanol over ceria and gold-ceria nanoshapes, Appl. Catal. B-Environ., 95 (2010) 87-92.
[91] F.W. Chang, H.Y. Yu, L.S. Roselin, H.C. Yang, Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts, Appl. Catal. A-Gen., 290 (2005) 138-147.
[92] H.C. Yang, F.W. Chang, L.S. Roselin, Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts, J Mol Catal A-Chem, 276 (2007) 184-190.
[93] F.W. Chang, S.C. Lai, L.S. Roselin, Hydrogen production by partial oxidation of methanol over ZnO-promoted Au/Al2O3 catalysts, J Mol Catal A-Chem, 282 (2008) 129-135.
[94] T.C. Ou, F.W. Chang, L.S. Roselin, Production of hydrogen via partial oxidation of methanol over bimetallic Au-Cu/TiO2 catalysts, J Mol Catal A-Chem, 293 (2008) 8-16.
[95] F.W. Chang, H.Y. Yu, L.S. Roselin, H.C. Yang, Production of hydrogen via partial oxidation of methanol over Au/TiO2 catalysts, Appl. Catal. A-Gen., 299 (2006) 298-298.
[96] R.K. Herz, A. Badlani, D.R. Schryer, B.T. Upchurch, 2-Component catalysts for low-temperature CO oxidation - a Monte-Carlo study, J Catal, 141 (1993) 219-238.
[97] P.D.D. S.Y. Huang, National Tsing Hua University,Hsinchu, Taiwan, ROC, (2006).
[98] M.R. Morales, B.P. Barbero, L.E. Cadus, Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts, Appl. Catal. B-Environ., 67 (2006) 229-236.
[99] W. Liu, M. Flytzani-Stephanopoulos, Transition metal-promoted oxidation catalysis by fluorite oxides: A study of CO oxidation over Cu-CeO2, Chem Eng J, 64 (1996) 283-294.
[100] G. Diaz, R. Perez-Hernandez, A. Gomez-Cortes, M. Benaissa, R. Mariscal, J.L.G. Fierro, CuO-SiO2 sol-gel catalysts: Characterization and catalytic properties for NO reduction, J Catal, 187 (1999) 1-14.
[101] S.M. Zhang, W.P. Huang, X.H. Qiu, B.Q. Li, X.C. Zheng, S.H. Wu, Comparative study on catalytic properties for low-temperature CO oxidation Of CU/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation, Catal Lett, 80 (2002) 41-46.
[102] M.F. Luo, Y.J. Zhong, X.X. Yuan, X.M. Zheng, TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation, Appl. Catal. A-Gen., 162 (1997) 121-131.
[103] K. Geissler, E. Newson, F. Vogel, T.B. Truong, P. Hottinger, A. Wokaun, Autothermal methanol reforming for hydrogen production in fuel cell applications, Phys Chem Chem Phys, 3 (2001) 289-293.
[104] J. Agrell, H. Birgersson, M. Boutonnet, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation, J Power Sources, 106 (2002) 249-257.
[105] J.S. Chung, R. Miranda, C.O. Bennett, Mechanism of partial oxidation of methanol over MoO3, J Catal, 114 (1988) 398-410.
[106] M. Tamura, A. Satsuma, K. Shimizu, CeO2-catalyzed nitrile hydration to amide: reaction mechanism and active sites, Catal Sci Technol, 3 (2013) 1386-1393.
[107] G. Busca, T. Montanari, C. Resini, G. Ramis, U. Costantino, Hydrogen from alcohols: IR and flow reactor studies, Catal Today, 143 (2009) 2-8.
[108] R.H. Liu, C.M. Zhang, J.X. Ma, Gold catalysts supported on crystalline Fe2O3 and CeO2/Fe2O3 for low-temperature CO oxidation, Chem Res Chinese U, 26 (2010) 98-104.
[109] C. Pojanavaraphan, U. Satitthai, A. Luengnaruemitchai, E. Gulari, Activity and stability of Au/CeO2-Fe2O3 catalysts for the hydrogen production via oxidative steam reforming of methanol, J Ind Eng Chem, 22 (2015) 41-52.
[110] Y.C. Liao, H.Y. Huang, Y.J. Huang, Photo-triggered catalytic reforming of methanol over gold-Promoted, copper-Zinc catalyst at low ignition temperature, Appl. Catal. B-Environ., 220 (2018) 264-271.
[111] O.H. Laguna, W.Y. Hernandez, G. Arzamendi, L.M. Gandia, M.A. Centeno, J.A. Odriozola, Gold supported on CuOx/CeO2 catalyst for the purification of hydrogen by the CO preferential oxidation reaction (PROX), Fuel, 118 (2014) 176-185.
[112] A.I. Kozlov, A.P. Kozlova, H.C. Liu, Y. Iwasawa, A new approach to active supported Au catalysts, Appl. Catal. A-Gen., 182 (1999) 9-28.
[113] M.A. Bollinger, M.A. Vannice, A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts, Appl. Catal. B-Environ., 8 (1996) 417-443.
[114] K.J. Kim, J.K. Song, S.S. Shin, S.J. Kang, M.C. Chung, S.C. Jung, W.J. Jeong, H.G. Ahn, Preparation and characterization of nanosized gold catalysts supported on Co3O4 and their activities for CO oxidation, J Nanosci Nanotechno, 11 (2011) 1605-1608.
[115] M.V. Twigg, M.S. Spencer, Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis, Top Catal, 22 (2003) 191-203.
[116] M.N. Shimomura, S.; Shigern, N., Japan Patent JP62-61641, 1987.
[117] E.D. Schrum, T.L. Reitz, H.H. Kung, Deactivation of CuO/ZnO and CuO/ZrO2 catalysts for oxidative methanol reforming, Catalyst Deactivation 2001, Proceedings, 139 (2001) 229-235.
[118] M. Kurtz, H. Wilmer, T. Genger, O. Hinrichsen, M. Muhler, Deactivation of supported copper catalysts for methanol synthesis, Catal Lett, 86 (2003) 77-80.