簡易檢索 / 詳目顯示

研究生: 林民和
論文名稱: 於鍺基板上以原子層化學氣相沉積鍍製高介電閘極絕緣層於下世代金屬-氧化物-半導體結構下之應用
Atomic Layer Deposition of High-κ Gate Dielectrics on Germanium used for Next Generation Metal-Oxide-Semiconductor application
指導教授: 林樹均
口試委員: 闕郁倫
甘炯耀
張哲豪
曾俊元
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 138
中文關鍵詞: 原子層氣相沉積高介電閘極氧化層
外文關鍵詞: ALD, Ge, High-k gate oxide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文裡,我們使用原子層化學氣相沉積(Atomic Layer Deposition, ALD)技術搭配遠端電漿系統於鍺基板上鍍製高介電材料。
    在第三章中,在氧化鉿/氧化鑭/p型鍺和n型鍺疊層結構中,我們探討在固定厚度下,不同比例的氧化鑭對於材料和電性特性的影響。根據實驗顯示在氧化鉿/鍺元件中插入一層氧化鑭可以改善其表面和電性特性。除此之外,我們鍍製更薄的鉿鑭氧化物來微縮等效氧化物厚度(Equivalent Oxide Thickness, EOT),當厚度降至4奈米時,最低的EOT值可以微縮到1.08奈米
    在第四章中,我們成功的使用遠端電漿ALD系統中的氮/氫/氬電漿表面處理鍍製出氧化鉿/氧化鑭高介電閘極氧化層。而介面中的鑭鍺氮氧化合物和鍺的外擴散現象也同時被X射線光電子能譜(XPS)和透射電子顯微鏡(TEM)給驗證。擁有極薄鑭鍺氮氧化合物的高介電元件表現出良好的電性特性,包括更大的介電值、更小的EOT、更低的漏電電流、更小的C-V遲滯窗口和更低的表面狀態密度。這是因為鑭鍺氮氧化合物可以有效的抑止鍺擴散至高介電元件中進而改善界面的特性。
    而在第五章中,我們鍍製氧化鈦-氧化鋁-氧化鑭疊層結構,透過不同的排列方式來探討氧化物的位置對於鍺金氧半元件的特性影響,而高介電氧化物的位置可以透過ALD精準的控制。結果中顯示,當氧化鑭當作和鍺的接觸層、當氧化鋁當作阻隔層來抑制鍺的外擴散和利用氧化鈦的高介電常數來微縮EOT,在這樣的排列組合下,我們可以利用各氧化物的各種優點同時得到最好的電性特性。
    最後,在第六章中,我們使用遠端電漿ALD系統中的原位循環水氧電漿製備氧化鉿和水氧電漿表面處理鍺基板表面。經過循環和表面水氧電漿處理的試片明顯表現出比沒有處理的試片擁有更好的電性特性,其中包括更高的電容值、更低的EOT和更低的漏電電流。這都因為高品質的氧化鉿和高品質的界面所致,水氧表面電漿處理可以去除殘留的原生氧化層和產生更多的表面化學吸附位置來形成更好的界面;另一方面,循環的水氧電漿處理可以生成更純更緻密的氧化鉿薄膜,因此可以抑止鍺外擴散至氧化鉿薄膜中。


    In this thesis, we use the atomic-layer-deposition (ALD) technique with remote-plasma system to prepare high-κ dielectrics on Ge substrate.
    In Chapter 3, the HfO2/La2O3/p-Ge and n-Ge stacks were deposited as gate dielectric to discuss the effect on material and electrical properties of different La2O3 ratio in fixed thickness. It shows that insertion of a La2O3 layer at the HfO2/Ge interface improves the interfacial and electrical properties of HfO2/Ge MOS devices. Moreover, we fabricated thin HfO2/La2O3/Ge devices for scaling down the EOT. The lowest EOT we achieved is down to 1.08 nm while thickness reduces to about 4 nm.
    In Chapter 4, in-situ N2/H2/Ar plasma surface-nitridation treatment on p-type Ge (100) with HfO2/La2O3 high-κ gate oxide was investigated by remote rf plasma on radical-assisted atomic layer deposition (RAALD). The interfacial LaGeOxNy formation and Ge outdiffusion were also investigated by X-ray Photoelectron Spectroscopy (XPS) and transmission electron microscopy (TEM). The high-κ MOS device with an ultrathin LaGeOxNy interlayer shows good electrical characteristics, including larger κ value, smaller equivalent oxide thickness, lower leakage current density, smaller C-V hysteresis, and lower interface-state density. The involved mechanism lies in that the LaGeOxNy interlayer can effectively block the diffusion of Ge, thus improving the high-κ films/Ge interface quality.
    In Chapter 5, we fabricated 8 nm thick TiO2-Al2O3-La2O3 stack structure with different arrangement to investigate the oxide location effect the Ge MOSCAPs properties. The location of high-κ layers were accurately controlled by atomic layer deposition (ALD). From the results, we found that the La2O3 be the contact layer with Ge substrate, Al2O3 be the blocking layer to suppress the Ge outdiffusion and TiO2 be the higher-κ layer on the top to reduce the EOT. In this arrangement, we could take all advantages of high-κ oxides and get the best electrical properties.
    Finally, in Chapter 6, we fabricate cyclic D2O plasma treatments on HfO2 films and surface D2O plasma treatment on p- Ge (100) substrate by radical-assisted atomic layer deposition (RAALD). The samples with cyclic and surface D2O plasma treatments show better electrical properties than the sample without treatment, because of higher quality of HfO2 films and better surface quality. It shows higher capacitance density, lower equivalent oxide thickness (EOT) and lower leakage current density, respectively. The mechanism lies in that D2O radical pre-treatment remove native oxide and D2O chemisorption sites to form better surface quality. On the other hand, in-situ cyclic D2O radical anneal could form purer and denser HfO2 to suppress Ge diffusion through HfO2 films.

    Abstract I 摘要 III 致謝 V List of Contents VII List of Figures XI List of Tables XV Chapter 1 Introduction 1 1.1 Prelude 2 1.2 Ge substrate 5 1.2.1 Characteristics of GeO 5 1.2.2 Passivation of Ge surface 7 1.2.2.1 Rare earth oxide 8 1.2.2.2 Nitride passivation layer 9 1.2.2.3 Epitaxial-Si layer 10 1.2.2.4 GeO2 passivation 11 1.3 High-k Materials for Gate Dielectric Application 11 1.4 Atomic Layer Deposition (ALD) 14 1.4.1 Introduction 14 1.4.2 ALD process 17 Chapter 2 Experiment procedures: device process flow and material properties analysis 23 2.1 Substrate preparation 24 2.1.1 Pre-gate clean 24 2.2 ALD high-k film deposition 25 2.2.1 Aluminum oxide, Al2O3 28 2.2.2 Hafnium Oxide, HfO2 28 2.2.3 Lanthanum oxide, La2O3 29 2.2.4 Titanium oxide, TiO2 30 2.3 Fabrication of metal electrode 31 2.3.1 Top electrode 31 2.3.2 Back-side clean 32 2.3.3 Bottom electrode 33 2.4 Post metal annealing (PMA) treatment 33 2.5 Material analysis 34 2.5.1 Structural and compositional analysis 34 2.5.1.1 X-ray photoelectron spectroscopy (XPS) 34 2.5.1.2 In-plane x-ray diffraction (IPXRD) 35 2.5.1.3 X-ray reflectivity (XRR) 36 2.5.1.4 High Resolution Transmission Electron Microscopy (HRTEM) 37 2.5.1.5 Auger electron spectroscopy (AES) 37 2.6 MOS capacitor process flow 38 2.7 Electrical measurement 39 2.8 Dit (interface state density) measurement [61] 39 Chapter 3 Atomic layer deposition of HfO2 and La2O3 thin films on Ge substrate for the gate dielectrics application 42 3.1 Introduction 43 3.2 Different ratio LHO on Ge substrate 44 3.3 Ultrathin LHO on Ge substrate 50 3.4 Conclusion 53 Chapter 4 Electrical properties of HfO2/La2O3 gate dielectrics on Ge with ultrathin nitride interfacial layer formed by in situ N2/H2/Ar radical pretreatment 55 4.1 Introduction 56 4.2 Experiment 57 4.3 Results and discussions 58 4.3.1 Material properties 58 4.3.2 Electrical properties 62 4.4 Conclusion 67 Chapter 5 Improved electrical properties of atomic layer deposited multilayer gate dielectrics in different arrangement for Germanium MOS devices 68 5.1 Motivation 69 5.2 Experiment 70 5.3 LTO and LATO 71 5.4 LATO and ALTO 82 5.5 Conclusion 86 Chapter 6 Surface modification via D2O plasma surface and cyclic treatments to enhance the performance of ALD-made HfO2/La2O3/Ge MOS devices 87 6.1 Motivation 88 6.2 Surface D2O radical pre-treatment 89 6.3 In-situ cyclic D2O radical anneal 95 6.3.1 Electrical properties 95 6.3.2 Material properties 98 6.4 Conclusion 102 Chapter 7 Conclusion 104 7.1 Summary 105 7.2 Future prospects 107 Reference 109 Publication List 123

    [1] Gordon E. Moore, Electronics Magazine, vol. 38, pp. 114–117, 1965.
    [2] [Online]. Available: http://download.intel.com/museum/Moores_Law/Printed_Materials/Moores_Law_Poster_Ltr.pdf.
    [3] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, vol. 69, no. 2, pp. 327–396, Feb. 2006.
    [4] [Online]. Available: http://www.sematech.org.
    [5] Y. Kamata, “High-k/Ge MOSFETs for future nanoelectronics,” Materials Today, vol. 11, no. 1–2, pp. 30–38, Jan. 2008.
    [6] K. C. Saraswat, C. O. Chui, T. Krishnamohan, A. Nayfeh, and P. McIntyre, “Ge based high performance nanoscale MOSFETs,” Microelectronic Engineering, vol. 80, pp. 15–21, Jun. 2005.
    [7] T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Applied Physics Letters, vol. 91, no. 12, p. 123123, 2007.
    [8] W. L. Jolly and W. M. Latimer, “The Equilibrium Ge (s)+ GeO2 (s)= 2GeO (g). The Heat of Formation of Germanic Oxide,” Journal of the American Chemical Society, vol. 74, no. 22, pp. 5757–5758, 1952.
    [9] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Applied Physics Letters, vol. 76, no. 16, p. 2244, 2000.
    [10] X.-J. Zhang, “Thermal desorption of ultraviolet–ozone oxidized Ge(001) for substrate cleaning,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 11, no. 5, p. 2553, Sep. 1993.
    [11] Y. Kamata, Y. Kamimuta, T. Ino, R. Iijima, M. Koyama, and A. Nishiyama, “Influences of Annealing Temperature on Characteristics of Ge p-Channel Metal Oxide Semiconductor Field Effect Transistors with ZrO 2 Gate Dielectrics,” Japanese Journal of Applied Physics, vol. 45, no. 7, pp. 5651–5656, Jul. 2006.
    [12] W. Bai, N. Lu, A. P. Ritenour, M. L. Lee, D. A. Antoniadis, D. Kwong, and S. Member, “The Electrical Properties of HfO2 Dielectric on Germanium and the Substrate Doping Effect,” IEEE Transactions on Electron Devices, vol. 53, no. 10, pp. 2551–2558, 2006.
    [13] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Applied Physics Letters, vol. 76, no. 16, p. 2244, 2000.
    [14] S. Van Elshocht, M. Caymax, T. Conard, S. De Gendt, I. Hoflijk, M. Houssa, B. De Jaeger, J. Van Steenbergen, M. Heyns, and M. Meuris, “Effect of hafnium germanate formation on the interface of HfO2/germanium metal oxide semiconductor devices,” Applied Physics Letters, vol. 88, no. 14, p. 141904, 2006.
    [15] M. Houssa, G. Pourtois, M. Caymax, M. Meuris, and M. M. Heyns, “First-principles study of the structural and electronic properties of (100)Ge/Ge(M)O2 interfaces (M=Al, La, or Hf),” Applied Physics Letters, vol. 92, no. 24, p. 242101, 2008.
    [16] T. J. Grassman, S. R. Bishop, and A. C. Kummel, “Density functional theory study of first-layer adsorption of ZrO2 and HfO2 on Ge(100),” Microelectronic Engineering, vol. 86, no. 3, pp. 249–258, Mar. 2009.
    [17] E. A. Chagarov and A. C. Kummel, “Ab initio molecular dynamics simulations of properties of a-Al2O3/vacuum and a-ZrO2/vacuum vs a-Al2O3/Ge(100)(2 x 1) and a-ZrO2/Ge(100)(2 x 1) interfaces.,” The Journal of chemical physics, vol. 130, no. 12, p. 124717, Mar. 2009.
    [18] G. Mavrou, S. Galata, P. Tsipas, a. Sotiropoulos, Y. Panayiotatos, a. Dimoulas, E. K. Evangelou, J. W. Seo, and C. Dieker, “Electrical properties of La2O3 and HfO2∕La2O3 gate dielectrics for germanium metal-oxide-semiconductor devices,” Journal of Applied Physics, vol. 103, no. 1, p. 014506, 2008.
    [19] F. Ito and K. C. Saraswat, “Nanoscale germanium MOS Dielectrics-part I: germanium oxynitrides,” IEEE Transactions on Electron Devices, vol. 53, no. 7, pp. 1501–1508, Jul. 2006.
    [20] H. Kim, D. Chi, P. C. McIntyre, and K. C. Saraswat, “Nanoscale germanium MOS Dielectrics-part II: high-k gate dielectrics,” IEEE Transactions on Electron Devices, vol. 53, no. 7, pp. 1509–1516, Jul. 2006.
    [21] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, “Atomic Layer Deposition of High-k Dielectric for Germanium MOS Applications—Substrate Surface Preparation,” IEEE Electron Device Letters, vol. 25, no. 5, pp. 274–276, May 2004.
    [22] T. Maeda, T. Yasuda, M. Nishizawa, N. Miyata, Y. Morita, and S. Takagi, “Ge metal-insulator-semiconductor structures with Ge3N4 dielectrics by direct nitridation of Ge substrates,” Applied Physics Letters, vol. 85, no. 15, p. 3181, 2004.
    [23] Y. Otani, Y. Itayama, T. Tanaka, Y. Fukuda, H. Toyota, T. Ono, M. Mitsui, and K. Nakagawa, “Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques,” Applied Physics Letters, vol. 90, no. 14, p. 142114, 2007.
    [24] T. Maeda, M. Nishizawa, Y. Morita, and S. Takagi, “Role of germanium nitride interfacial layers in HfO2/germanium nitride/germanium metal-insulator-semiconductor structures,” Applied Physics Letters, vol. 90, no. 7, p. 072911, 2007.
    [25] P. C. McIntyre, Y. Oshima, E. Kim, and K. C. Saraswat, “Interface studies of ALD-grown metal oxide insulators on Ge and III–V semiconductors (Invited Paper),” Microelectronic Engineering, vol. 86, no. 7–9, pp. 1536–1539, Jul. 2009.
    [26] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, “Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density,” Applied Physics Letters, vol. 94, no. 18, p. 183102, 2009.
    [27] Y. Oshima, Y. Sun, D. Kuzum, T. Sugawara, K. C. Saraswat, P. Pianetta, and P. C. McIntyre, “Chemical Bonding, Interfaces, and Defects in Hafnium Oxide∕Germanium Oxynitride Gate Stacks on Ge(100),” Journal of The Electrochemical Society, vol. 155, no. 12, p. G304, 2008.
    [28] T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. McIntyre, “Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers,” Applied Physics Letters, vol. 90, no. 11, p. 112912, 2007.
    [29] F. Gao, S. J. Lee, J. S. Pan, L. J. Tang, and D.-L. Kwong, “Surface passivation using ultrathin AlNx film for Ge–metal–oxide–semiconductor devices with hafnium oxide gate dielectric,” Applied Physics Letters, vol. 86, no. 11, p. 113501, 2005.
    [30] A. Ritenour, J. Hennessy, and D. A. Antoniadis, “Investigation of Carrier Transport in Germanium MOSFETs With WN/Al2O3/AlN Gate Stacks,” IEEE Electron Device Letters, vol. 28, no. 8, pp. 746–749, 2007.
    [31] K. H. Kim, R. G. Gordon, A. Ritenour, and D. A. Antoniadis, “Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-κ oxide/tungsten nitride gate stacks,” Applied Physics Letters, vol. 90, no. 21, p. 212104, 2007.
    [32] N. Wu, Q. Zhang, C. Zhu, D. S. H. Chan, M. F. Li, N. Balasubramanian, A. Chin, and D.-L. Kwong, “Alternative surface passivation on germanium for metal-oxide-semiconductor applications with high-k gate dielectric,” Applied Physics Letters, vol. 85, no. 18, p. 4127, 2004.
    [33] R. Xie, T. H. Phung, M. Yu, and C. Zhu, “Effective Surface Passivation by Novel SiH4–NH3 Treatment and BTI Characteristics on Interface-Engineered High-Mobility HfO2-Gated Ge pMOSFETs,” IEEE Trans. Electron DevicesElectron Devices, vol. 57, no. 6, pp. 1399–1407, 2010.
    [34] P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A. Stesmans, L.-Å Ragnarsson, F. E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, and M. M. Heyns, “High performance Ge pMOS devices using a Si-compatible process flow,” pp. 75–78, 2000.
    [35] M. Caymax, F. Leys, J. Mitard, K. Martens, L. Yang, G. Pourtois, W. Vandervorst, M. Meuris, and R. Loo, “The Influence of the Epitaxial Growth Process Parameters on Layer Characteristics and Device Performance in Si-Passivated Ge pMOSFETs,” Journal of The Electrochemical Society, vol. 156, no. 12, p. H979, 2009.
    [36] B. De Jaeger, R. Bonzom, F. Leys, O. Richard, J. Van Steenbergen, G. Winderickx, E. Van Moorhem, G. Raskin, F. Letertre, T. Billon, M. Meuris, and M. Heyns, “Optimisation of a thin epitaxial Si layer as Ge passivation layer to demonstrate deep sub-micron n- and p-FETs on Ge-On-Insulator substrates,” Microelectronic Engineering, vol. 80, pp. 26–29, Jun. 2005.
    [37] H. Kawabata, H. Ueba, and C. Tatsuyama, “Heteroepitaxy of Si films on a Ge(100)‐2×1 surface,” Journal of Applied Physics, vol. 66, no. 2, p. 634, 1989.
    [38] R. Tsu, H. Z. Xiao, Y.‐W. Kim, M.‐A. Hasan, H. K. Birnbaum, J. E. Greene, D.‐S. Lin, and T.‐C. Chiang, “Surface segregation and growth‐mode transitions during the initial stages of Si growth on Ge(001)2×1 by cyclic gas‐source molecular beam epitaxy from Si2H6,” Journal of Applied Physics, vol. 75, no. 1, p. 240, 1994.
    [39] A. Muoz, N. Chetty, and Richard M. Martin , “Modification of heterojunction band offsets by thin layers at interfaces: Role of the interface dipole,” Physical Review B, vol. 41, no. 5, 1990.
    [40] W. B. Chen, C. H. Wu, B. S. Shie,and A. Chin, “Gate-First TaN/La2O3/ SiO2/Ge n-MOSFETs Using Laser Annealing,” IEEE Electron Device Letters, vol. 31, no. 11, pp. 1184–1186, 2010.
    [41] W. B. Chen,and A. Chin, “High Performance of Ge nMOSFETs Using SiO2 Interfacial Layer and TiLaO Gate Dielectric,” IEEE Electron Device Letters, vol. 31, no. 1, pp. 80–82, 2010.
    [42] W. B. Chen, B. S. Shie, and A. Chin, “Higher Gate Capacitance Ge n-MOSFETs Using Laser Annealing,” IEEE Electron Device Letters, vol. 32, no. 4, pp. 449–451, Apr. 2011.
    [43] A. Delabie, F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, and M. Meuris, “Effective electrical passivation of Ge(100) for high-k gate dielectric layers using germanium oxide,” Applied Physics Letters, vol. 91, no. 8, p. 082904, 2007.
    [44] Q. Xie, S. Deng, M. Schaekers, D. Lin,M. Caymax, A. Delabie, Y. Jiang, X. Qu, D. Deduytsche, and C. Detavernier , “High-Performance Ge MOS Capacitors by O2 Plasma Passivation and O2 Ambient Annealing,” IEEE Electron Device Letters, vol. 32, no. 12, p. 1656, 2011.
    [45] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “Al2O3/GeOx/Ge gate stacks with low interface trap density fabricated by electron cyclotron resonance plasma postoxidation,” Applied Physics Letters, vol. 98, p. 112902, 2011.
    [46] O. Engström, B. Raeissi, S. Hall, O. Buiu, M. C. Lemme, H. D. B. Gottlob, P. K. Hurley, and K. Cherkaoui, “Navigation aids in the search for future high-k dielectrics: Physical and electrical trends,” Solid-State Electronics, vol. 51, no. 4, pp. 622–626, Apr. 2007.
    [47] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, no. 3, p. 1785, 2000.
    [48] Y. Watanabe, H. Ota, S. Migita, Y. Kamimuta, K. Iwamoto, M. Takahashi, A. Ogawa, H. Ito, T. Nabatame, and A. Toriumi, “Achievement of Higher-k and High-Φ in Phase Controlled HfO2 Film using Post Gate-Electrode-Deposition Annealing Y. Watanabe,” ECS Transactions, vol. 11, no. 4, pp. 35–45, 2007.
    [49] K. Tomida, K. Kita, and A. Toriumi, “Dielectric constant enhancement due to Si incorporation into HfO2,” Applied Physics Letters, vol. 89, no. 14, p. 142902, 2006.
    [50] 張哲豪, 清華大學博士論文, 2006.
    [51] T. suntola and J. Antson, “U. S. Patent No.4058430,” 1977.
    [52] M. Ahonen, M. Pessa, and T. Suntola, “A study of ZnTe films grown on glass substrates using an atomic layer evaporation method,” Thin Solid Films, vol. 65, pp. 301–307, 1980.
    [53] R. Chau, S. Member, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High-k/Metal – Gate Stack and Its MOSFET Characteristics,” IEEE Electron Device Letters, vol. 25, no. 6, pp. 408–410, 2004.
    [54] [Online]. Available: http://www.picosun.com.
    [55] [Online]. Available: http://www.cambridgenanotech.com/index.php.
    [56] S. Rivillon, Y. J. Chabal, F. Amy, and A. Kahn, “Hydrogen passivation of germanium (100) surface using wet chemical preparation,” Applied Physics Letters, vol. 87, no. 25, p. 253101, 2005.
    [57] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, “Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation,” Applied Physics Letters, vol. 93, no. 3, p. 032104, 2008.
    [58] [Online]. Available: http://www.sigmaaldrich.com/.
    [59] [Online]. Available: http://www.ulvac.com.
    [60] [Online]. Available: http://www.ma-tek.com.tw.
    [61] D. Kuzum, “Interface-Engineered Ge MOSFETs for future high performance CMOS applications.” 2009.
    [62] E. H. N. and J. R. Brews, “MOS Physics and Technology.” New York: Wiley, 2003.
    [63] D. K. Schroder, “Semiconductor Material and Device Characterization.” New York: Wiley, 2006.
    [64] A. Dimoulas, “Defects in High-k Gate Dielectric Stacks.” vol. 220, Ed. E.Gusev, Ed. Springer, 2006, pp. 237–248.
    [65] L. Lamagna, C. Wiemer, M. Perego, S. N. Volkos, S. Baldovino, D. Tsoutsou, S. Schamm-Chardon, P. E. Coulon, and M. Fanciulli, “O3-based atomic layer deposition of hexagonal La2O3 films on Si(100) and Ge(100) substrates,” Journal of Applied Physics, vol. 108, no. 8, p. 084108, 2010.
    [66] G. Mavrou, S. Galata, P. Tsipas, a. Sotiropoulos, Y. Panayiotatos, a. Dimoulas, E. K. Evangelou, J. W. Seo, and C. Dieker, “Electrical properties of La2O3 and HfO2/La2O3 gate dielectrics for germanium metal-oxide-semiconductor devices,” Journal of Applied Physics, vol. 103, no. 1, p. 014506, 2008.
    [67] X.-F. Li, X.-J. Liu, Y.-Q. Cao, A.-D. Li, H. Li, and D. Wu “Improved interfacial and electrical properties of atomic layer deposition HfO2 films on Ge with La2O3 passivation,” Applied Surface Science, vol. 264, pp. 783-786, 2013.
    [68] G. Nicholas, D. P. Brunco, A. Dimoulas, J. Van Steenbergen, F. Bellenger, M. Houssa, M. Caymax, M. Meuris, Y. Panayiotatos, and A. Sotiropoulos, “Germanium MOSFETs With CeO2/HfO2/TiN Gate Stacks,” IEEE Transactions on Electron Devices, vol. 54, no. 6, pp. 1425–1430, Jun. 2007.
    [69] A. Laha, a. Fissel, and H. J. Osten, “Effect of Ge passivation on interfacial properties of crystalline Gd2O3 thin films grown on Si substrates,” Applied Physics Letters, vol. 96, no. 7, p. 072903, 2010.
    [70] S. Rahman and E. K. Evangelou, “Dielectric Relaxation and Charge Trapping Characteristics Study in Germanium Based MOS Devices With HfO2/Dy2O3 Gate Stacks,” IEEE Transactions on Electron Devices, vol. 58, no. 10, pp. 3549–3558, 2011.
    [71] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, “On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates,” IEEE Transactions on Electron Devices, vol. 55, no. 2, pp. 547–556, Feb. 2008.
    [72] A. Dimoulas, G. Vellianitis, G. Mavrou, E. K. Evangelou, and A. Sotiropoulos, “Intrinsic carrier effects in HfO2–Ge metal–insulator–semiconductor capacitors,” Applied Physics Letters, vol. 86, no. 22, p. 223507, 2005.
    [73] W. He, D. S. H. Chan, L. Zhang, and B. J. Cho, “Cubic-Structured HfO2 With Optimized Doping of Lanthanum for Higher Dielectric Constant,” IEEE Electron Device Letters, vol. 30, no. 6, pp. 623–625, 2009.
    [74] 鍾維修, 清華大學碩士論文, 2009.
    [75] H. Li, L. Lin, and J. Robertson, “Identifying a suitable passivation route for Ge interfaces,” Applied Physics Letters, vol. 101, no. 5, p. 052903, 2012.
    [76] H. Kim and P. C. McIntyre, “Spinodal decomposition in amorphous metal–silicate thin films: Phase diagram analysis and interface effects on kinetics,” Journal of Applied Physics, vol. 92, no. 9, p. 5094, 2002.
    [77] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, “Germanium MOS capacitors incorporating ultrathin high-κ gate dielectric,” IEEE Electron Device Letters, vol. 23, no. 8, pp. 473–475, Aug. 2002.
    [78] Q. Zhang, N. Wu, D. M. Y. Lai, Y. Nikolai, L. K. Bera, and C. Zhu, “Germanium Incorporation in HfO2 Dielectric on Germanium Substrate,” Journal of The Electrochemical Society, vol. 153, no. 3, p. G207, 2006.
    [79] Q.-Q. Sun, Y. Shi, L. Dong, H. Liu, S.-J. Ding, and D. W. Zhang, “Impact of germanium related defects on electrical performance of hafnium,” Applied Physics Letters, vol. 92 , pp. 102908, 2008.
    [80] N. Lu, W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antoniadis, and D. L. Kwong, “Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric,” Applied Physics Letters, vol. 87, no. 5, pp. 051922, 2005.
    [81] K. Kita, S. Suzuki, H. Nomura, T. Takahashi, T. Nishimura, and A. Toriumi, “Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2349–2353, Apr. 2008.
    [82] Q. Xie, J. Musschoot, M. Schaekers, M. Caymax, A. Delabie, X.-P. Qu, Y.-L. Jiang, S. Van den Berghe, J. Liu, and C. Detavernier, “Ultrathin GeOxNy interlayer formed by in situ NH3 plasma pretreatment for passivation of germanium metal-oxide-semiconductor devices,” Applied Physics Letters, vol. 97, no. 22, p. 222902, 2010.
    [83] A. Dimoulas, D. Brunco, S. Ferrari, J. Seo, Y. Panayiotatos, A. Sotiropoulos, T. Conard, M. Caymax, S. Spiga, and M. Fanciulli, “Interface engineering for Ge metal-oxide–semiconductor devices,” Thin Solid Films, vol. 515, no. 16, pp. 6337–6343, Jun. 2007.
    [84] E. Evangelou, G. Mavrou, A. Dimoulas, and N. Konofaos, “Rare earth oxides as high-k dielectrics for Ge based MOS devices: An electrical study of Pt/Gd2O3/Ge capacitors,” Solid-State Electronics, vol. 51, no. 1, pp. 164–169, Jan. 2007.
    [85] J. Song, K. Kakushima, P. Ahmet, K. Tsutsui, N. Sugii, T. Hattori, and H. Iwai, “Effect of Ultrathin Si Passivation Layer for Ge MOS Structure with La2O3 Gate Dielectric,” ECS Transactions, vol. 16, no. 5, pp. 285-293, 2008.
    [86] G. Mavrou, S. Galata, A. Sotiropoulos, P. Tsipas, Y. Panayiotatos, A. Dimoulas, E. Evangelou, J. Seo, and C. Dieker, “Germanium metal-insulator-semiconductor capacitors with rare earth La2O3 gate dielectric,” Microelectronic Engineering, vol. 84, no. 9–10, pp. 2324–2327, Sep. 2007.
    [87] D. Tsoutsou, Y. Panayiotatos, A. Sotiropoulos, G. Mavrou, E. Golias, and S. F. Galata, “Chemical stability of lanthanum germanate passivating layer on Ge upon high-k deposition : A photoemission study on the role of La in the interface chemistry,” Journal of Applied Physics, vol. 108, no. 6, pp. 064115, 2010.
    [88] D. P. Brunco, A. Dimoulas, N. Boukos, M. Houssa, T. Conard, K. Martens, C. Zhao, F. Bellenger, M. Caymax, M. Meuris, and M. M. Heyns, “Materials and electrical characterization of molecular beam deposited CeO2 and CeO2/HfO2 bilayers on germanium,” Journal of Applied Physics, vol. 102, no. 2, pp. 024104, 2007.
    [89] C. Li, X. Zou, P. Lai, J. Xu, and C. Chan, “Effects of Ti content and wet-N2 anneal on Ge MOS capacitors with HfTiO gate dielectric,” Microelectronics Reliability, vol. 48, no. 4, pp. 526–530, Apr. 2008.
    [90] A. Dimoulas, D. Tsoutsou, Y. Panayiotatos, A. Sotiropoulos, G. Mavrou, S. F. Galata, and E. Golias, “The role of La surface chemistry in the passivation of Ge,” Applied Physics Letters, vol. 96, no. 1, pp. 012902, 2010.
    [91] M. Quast, “In situ and ex situ examination of plasma-assisted nitriding of aluminium alloys,” Surface and Coatings Technology, vol. 135, no. 2–3, pp. 238–249, Jan. 2001.
    [92] P. Batude, X. Garros, L. Clavelier, C. Leroyer, J. Hartmann, V. Loup, P. Besson, L. Vandroux, S. Deleonibus, and F. Boulanger, “In-depth investigation of the mechanisms impacting C-V/G-V characteristics of Ge/GeON/HfO2/TiN stacks by electrical modeling,” Microelectronic Engineering, vol. 84, no. 9–10, pp. 2320–2323, Sep. 2007.
    [93] K. Kukli, K. Forsgren, M. Ritala, M. Leskelä, J. Aarik, and A. Hårsta, “Dielectric Properties of Zirconium Oxide Grown by Atomic Layer Deposition from Iodide Precursor,” Journal of The Electrochemical Society, vol. 148, no. 12, p. F227, 2001.
    [94] H. X. Xu, J. P. Xu, C. X. Li, and P. T. Lai, “Improved electrical properties of Ge metal-oxide-semiconductor capacitors with high-k HfO2 gate dielectric by using La2O3 interlayer sputtered with/without N2 ambient,” Applied Physics Letters, vol. 97, no. 2, pp. 022903, 2010.
    [95] R. Zhang, N. Taoka, M. Takenaka, and S. Takagi, “1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation,” 2011 International Electron Devices Meeting, pp. 28.3.1–28.3.4, Dec. 2011.
    [96] R. Xie, T. H. Phung, W. He, M. Yu, and C. Zhu, “Interface-Engineered High-Mobility High-κ /Ge pMOSFETs With 1-nm Equivalent Oxide Thickness,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1330–1337, 2009.
    [97] S. Swaminathan, M. Shandalov, Y. Oshima, and P. C. McIntyre, “Bilayer metal oxide gate insulators for scaled Ge-channel metal-oxide-semiconductor devices,” Applied Physics Letters, vol. 96, no. 8, pp. 082904, 2010.
    [98] C. Rossel, A. Dimoulas, A. Tapponnier, D. Caimi, D. J. Webb, C. Andersson, M. Sousa, C. Marchiori, H. Siegwart, J. Fompeyrine, R. Germann, and A. Fet, “Ge p-channel MOSFETs with La2O3 and Al2O3 Gate Dielectrics,” Proceedings of the 38th European Solid-state Device Research Conference, pp. 79–82, 2008.
    [99] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, and H. Seidl, “Crystallization behavior of thin ALD-Al2O3 films,” Thin Solid Films, vol. 425, pp. 216–220, 2003.
    [100] K. J. Hubbard, D. G. Schlom, and I. Introduction, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, p. 2757, 1996.
    [101] S. Swaminathan and P. C. McIntyre, “Titania/Alumina Bilayer Gate Dielectrics for Ge MOS Devices: Frequency- and Temperature-Dependent Electrical Characteristics,” Electrochemical and Solid-State Letters, vol. 13, no. 9, p. G79, 2010.
    [102] L. Zhang, S. Member, M. Gunji, S. Thombare, P. C. Mcintyre, A. Tio, A. O. Ge, and A. P. M. Fabrication, “EOT Scaling of TiO2/Al2O3 on Germanium pMOSFETs and Impact of Gate Metal Selection,” IEEE Electron Device Letters, vol. 34, no. 6, pp. 732–734, 2013.
    [103] M. Suzuki, M. Koyama, and A. Kinoshita, “Detailed investigation of the effects of La and Al content on the electrical characteristics and reliability properties of La–Al–O gate dielectrics,” Microelectronics Reliability, vol. 50, no. 12, pp. 1920–1923, Dec. 2010.
    [104] V. V. Afanas’ev, Y. G. Fedorenko, and A. Stesmans, “Interface traps and dangling-bond defects in (100)Ge/HfO2,” Applied Physics Letters, vol. 87, no. 3, pp. 032107, 2005.
    [105] M. T. and S. T. R. Zhang, P. C. Huang, N. Taoka, “High Mobility Ge pMOSFETs with 0.7 nm Ultrathin EOT using HfO2/Al2O3/GeOx/Ge Gate Stacks Fabricated by Plasma Post Oxidation,” 2012 VLSI Technology, pp. 161–162, 2012.
    [106] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. K. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Applied Physics Letters, vol. 89, no. 25, p. 252110, 2006.
    [107] J. R. Weber, A. Janotti, P. Rinke, and C. G. Van de Walle, “Dangling-bond defects and hydrogen passivation in germanium,” Applied Physics Letters, vol. 91, no. 14, pp. 142101, 2007.
    [108] A. Stesmans and V. V. Afanas’ev, “Electrical activity of interfacial paramagnetic defects in thermal (100) Si/SiO2,” Physical Review B, vol. 57, no. 16, pp. 30–34, 1998.
    [109] S. Swaminathan, M. A. Kelly, P. C. McIntyre, and Y. Oshima, “Oxidant prepulsing of Ge (100) prior to atomic layer deposition of Al2O3: In situ surface characterization,” Applied Physics Letters, vol. 95, no. 3, pp. 032907, 2009.
    [110] S. S. Lee, J. Y. Baik, K. An, Y. D. Suh, J. Oh, and Y. Kim, “Reduction of Incubation Period by Employing OH-Terminated Si ( 001 ) Substrates in the Atomic Layer Deposition of Al2O3,” J. Phys. Chem. B, no. 1, pp. 15128–15132, 2004.
    [111] R. L. Puurunen, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium dioxide from hafnium tetrachloride and water,” Journal of Applied Physics, vol. 95, no. 9, pp. 4777, 2004.
    [112] A. K. Joon Sung Lee, Tobin Kaufman-Osborn, Wilhelm Melitz, Sangyeob Lee, “Effect of H2O chemisorption on passivation of Ge(100) surface studied by scanning tunneling microscopy,” Surface Science, vol. 605, pp. 1583–1588, 2011.
    [113] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Journal of Applied Physics, vol. 97, no. 12, pp. 121301, 2005.
    [114] N. Sano, M. Sekiya, M. Hara, A. Kohno, and T. Sameshima, “Improvement of SiO2/Si interface by low‐temperature annealing in wet atmosphere,” Applied Physics Letters, vol. 66, no. 16, pp. 2107, 1995.
    [115] B. Laboratories, L. Technologies, and M. Hill, “Initial H2O-induced Oxidation of Si (100)-(2x1),” Physical Review Letters, vol. 79, no. 15, pp. 2851–2854, 1997.
    [116] 侯承浩, 清華大學博士論文, 2009.
    [117] M. H. Lin, C. H. Hou, J. Y. Wu, and T. B. Wu, “Thermal Stability Improvement via Cyclic D2O Radical Anneal Interposed in Atomic Layer Deposition Process,” Journal of The Electrochemical Society, vol. 158, no. 3, pp. H221–H223, 2011.
    [118] 林民和, 清華大學碩士論文, 2009.
    [119] T. Krishnamohan, Z. Krivokapic, S. Member, K. Uchida, Y. Nishi, and K. C. Saraswat, “High-Mobility Ultrathin Strained Ge MOSFETs on Bulk and SOI With Low Band-to-Band Tunneling Leakage : Experiments,” IEEE Transactions on Electron Devices, vol. 53, no. 5, pp. 990–999, 2006.
    [120] J. Feng, R. Woo, S. Chen, Y. Liu, P. B. Griffin, J. D. Plummer, and A. H. P. Ge, “P-Channel Germanium FinFET Based on Rapid Melt Growth,” IEEE Electron Device Letters, vol. 28, no. 7, pp. 637–639, 2007.
    [121] K. Ikeda, M. Oda, Y. Kamimuta, Y. Moriyama, and T. Tezuka, “Hole-Mobility and Drive-Current Enhancement in Ge-Rich Strained Silicon–Germanium Wire Tri-Gate Metal–Oxide–Semiconductor Field-Effect Transistors with Nickel-Germanosilicide Metal Source and Drain,” Applied Physics Express, vol. 3, no. 12, p. 124201, Dec. 2010.
    [122] L. Hutin, M. Cassé, C. Le Royer, J. Damlencourt, A. Pouydebasque, C. Xu, C. Tabone, J. Hartmann, V. Carron, H. Grampeix, V. Mazzocchi, R. Truche, O. Weber, P. Batude, X. Garros, L. Clavelier, M. Vinet, and O. Faynot, “20nm Gate Length Trigate pFETs on Strained SGOI for High Performance CMOS,” SymposiumonVLSI Technology Digest of Technical Papers, pp. 37–38, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE