簡易檢索 / 詳目顯示

研究生: 陳杰興
CHEN, CHIEH-HSING
論文名稱: 使用GPU進行哼唱選歌的比對加速機制
Speedup Mechanism for Comparison of Query by Singing/Humming over GPUs
指導教授: 張智星
口試委員: 蘇文鈺
李俊仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 53
中文關鍵詞: 音樂檢索哼唱選歌線性伸縮GPU重複片段
外文關鍵詞: Music retrieval, Query-by-singing/humming, linear scaling, GPU, repeating pattern
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們使將哼唱選歌 (Query by Singing/Humming, QBSH)系統中的比對方法,使用平行化的方式實作至GPU上。此系統可提供使用者哼或唱一首曲子,接著會從資料庫的13000首歌當中,進行比對,最後回傳最相似的歌曲給使用者。
    為了減少比對時所需時間,我們同時也針對資料庫進行優化,找出每首歌曲重複出現片段中最長的一段,並將之移除,重複的片段只保留第一次出現的部分。比起未移除前,比對時間縮短了21%。
    此外,我們在GPU上提供了兩種不同的哼唱搜尋方式,分別為從頭比對與從任意處比對。在任意處比對方面,我們又探討了不同的平行化實作方式,在不犧牲準確率的情況下,來改進平行化運算的程度。在經過最佳化後,我們使用GPU來加速哼唱選歌效率加快了17倍之多。最後,我們同時也成功地將此哼唱搜尋技術實作至一個公開的線上系統中。


    This thesis presents the use of graphics processing units (GPUs) for implementing a parallelized comparison engine in a query-by-singing/humming (QBSH) system, which takes a user's singing or humming input and returns the most likely songs from a database of about 13,000 song tracks. To speed up the comparison, we employ a repeating pattern removal technique to retain only unique tunes in the database. This technique yields a 21% reduction in computing time. Moreover, two comparison methods are provided in the proposed scheme: compare-from-the-beginning and compare-from-anywhere. For the compare-from-anywhere scenario, we explore different parallel schemes in GPU for achieving the best efficiency without sacrificing the retrieval accuracy. With an optimal speedup factor of 17, we have successfully implemented an online and publicly available QBSH system.

    摘要 I Abstract II 謝誌 III 目錄 IV 表目次 VI 圖目次 VII 第一章 緒論 9 1.1 研究主題 9 1.2 相關研究簡介 9 1.3 本論文的研究方向及主要成果 11 1.4 章節概要 11 第二章 旋律辨識系統MIRACLE的改進 12 2.1 旋律辨識系統MIRACLE簡介 12 2.2 CUDA (Compute Unified Device Architecture)簡介 18 2.3 線性伸縮 (Linear Scaling) 23 2.4 哼唱選歌核心於CUDA上的實作 25 2.4.1 讀取資料庫中歌曲資料 26 2.4.2 資料庫歌曲資料前處理,並儲存至GPU的記憶體中 26 2.4.3 使用者輸入音高向量的前處理 27 2.4.4 GPU上進行使用者輸入音高向量的線性伸縮 27 2.4.5 GPU上的比對工作 28 2.4.6 回傳辨識結果 30 2.5 消除重複歌曲 30 2.6 歌曲中的重複片段 31 第三章 實驗結果與分析討論 36 3.1 實驗使用的測試語料及資料庫 36 3.2 實驗環境設定 37 3.3 使用CUDA架構前後的系統效能分析 37 3.4 消除重複片段前後的辨識率分析 42 第四章 結論與未來工作 49 4.1 結論 49 4.2 未來工作 49 參考文獻 51

    [1] J. Ghias, D. C. Logan, and B. C. Smith, “Query by humming-musical information retrieval in an audio database,” in Proc. ACM Multimedia’95, San Francisco, pp. 216–221, 1995.
    [2] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J. Cunningham, “Toward the digital music library: Tune retrieval from acoustic input,” in Proc. ACM Digital Libraries, pp. 11–18, 1996.
    [3] J.-S. R. Jang, H.-R. Lee, and M.-Y. Kao, “Content-based Music Retrieval Using Linear Scaling and Branch-and-Bound Tree search,” in Proc. of IEEE International Conference on Multimedia and Expo, August 2001.
    [4] J.-S. R. Jang, J.-C. Chen, and M.-Y. Kao. “MIRACLE: A Music Information Retrieval System with Clustered Computing Engines,” in Proceedings of the 2nd International Conference on Music Information Retrieval, ISMIR 2001, 2001.
    [5] G. Poli, A. L. M. Levada, J. F. Mari, J. H. Satio, “Voice Command Recognition with Dynamic Time Warping (DTW) using Graphics Processing Units (GPU) with Compute Unified Device Architecture (CUDA),” in Proceedings of the 19th International Symposium on Computer Architecture and High Performance Computing , SBAC-PAD 2007, Brazil, pp. 19–25, 2007.
    [6] Jun Li, Shuangping Chen, Yanhui Li, “The Fast Evaluation of Hidden Markov Models on GPU,” in IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, vol. 4:426-430, Nov., 2009.
    [7] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul, “Accelerating Dynamic Time Warping Subsequence Search with GPUs and FPGAs,” in ICDM '10 Proceedings of the 2010 IEEE International Conference on Data Mining, pp. 1001-1006, 2010.
    [8] P. Ferraro, P. Hanna, L. Imbert, and T. Izart, “Accelerating Query-by-Humming on GPU,” in Proceedings of the 10th International Conference on Music Information Retrieval, ISMIR 2009, pp. 279–284, 2009.
    [9] Chung-Che Wang, Chieh-Hsing Chen, Chin-Yang Kuo, Li-Ting Chiu and Jyh-Shing Roger Jang, “Welcome to Miracle!” http://miracle.mirlab.org:8080/miracle/, 2011
    [10] NVIDIA, “2011 CUDA programming contest in Taiwan,” http://nvidia.ithome.com.tw/cuda/, 2011
    [11] Jia-Lien Hsu, Chih-Chin Liu, and Arbee L. P. Chen, “Efficient Repeating Pattern Finding in Music Databases,” International Conference on Information and Knowledge Management (ACM CIKM),ACM ,pp. 281-288, November 03. 1998.
    [12] Jang, J.-S Roger, Ming-Yang Kao, “A Query-by-Singing System based on Dynamic Programming,” International Workshop on Intelligent Systems Resolutions (the 8th Bellman Continuum), PP. 85-89, Hsinchu, Taiwan, Dec 2000.
    [13] 周秉誼, “GPU高效能運算環境—CUDA與GPU Cluster介紹,” http://www.cc.ntu.edu.tw/chinese/epaper/0012/20100320_1205.htm, 2012
    [14] CVG @ ETHZ - GP-GPU: General Purpose Programming on the Graphics Processing Unit, http://www.cvg.ethz.ch/teaching/2011spring/gpgpu/, 2012
    [15] 林俊淵, 周嘉奕, 林郁翔, 李昇達, 陳昱蓉, 黃宣穎, 李天齡, “CUDA輕鬆上手。新世代GPU應用技術, ” 松崗資訊股份有限公司, 2011
    [16] NVIDIA, “NVIDIA CUDA C Programming Guide Version 4.2.”
    [17] CUDA - 维基百科,自由的百科全书, http://zh.wikipedia.org/wiki/CUDA, 2012
    [18] NVIDIA, “Advanced CUDA Webinar Memory Optimizations,” http://developer.download.nvidia.com/CUDA/training/NVIDIA_GPU_Computing_Webinars_CUDA_Memory_Optimization.pdf, 2012
    [19] Rob Farber, “CUDA APPLICATION DESIGN AND DEVELOPMENT,” Elsevier Inc, 2011
    [20] Chung-Che Wang, Chieh-Hsing Chen, Chin-Yang Kuo, Li-Ting Chiu, and Jyh-Shing Roger Jang, “Accelerating Query by Singing/Humming on GPU: Optimization for Web Deployment,” The 36th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE