簡易檢索 / 詳目顯示

研究生: 陳建穎
Chen, Chien-Ying
論文名稱: DuraCap: a Power-Bootstrapping, Maximum Power Point Tracking Energy-Harvesting System
DuraCap: 具有最大功率追蹤與冷啟動功能之能源採集系統
指導教授: 周百祥
Chou, Pai H.
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 最大功率追蹤能源採集超級電容邊界控制電路太陽能供電
外文關鍵詞: Maximum Power Point Tracking, Energy Harvesting, Supercapacitor, Bound-Control Circuit, Solar Powered
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個具有最大功率追蹤(Maximum Power Point Tracking)及冷啟動功能之能源採集系統,DuraCap。此系統係針對無線感測網路(WSN)及手持電子裝置之供電所設計,使用太陽能板(Solar Panel)進行能源轉換,並利用超級電容(Supercapacitor)儲存電力,可提供長時間且穩定的電源,亦解決無線感測平台長久以來使用電池導致操作時間不足的問題。論文中提出一種邊界控制電路(Bound-Control Circuit),可經由微控制器設定欲追蹤之最大功率點,邊界控制電路即會自動對PFM Regulator進行操作,進而維持太陽能於最大功率點輸出能源。DuraCap亦包含太陽能曲線追蹤器(I-V Curve Tracer),可經由微控制器監控太陽能板之狀態,藉此計算即時的最大功率點,以維持系統能源收集之效率。此外,針對太陽能於系統中電源輸出路徑之控制,本論文亦開發兩種電源路徑開關(Enhanced Power Path Switch),可使用較低的閘極控制電壓進行電源路徑切換之控制。實驗結果顯示,DuraCap採用邊界控制電路(Bound-Control Circuit)、PFM Regulator、曲線追蹤器(I-V Tracer)、電源路徑開關(Enhanced Power Path Switch)及超級電容(Supercapacitor),可有效的降低系統耗電、提高能源收集效率,並且提供無線感測平台穩定且長久的電源,大幅提升其運作時間。


    DuraCap is a solar-powered energy harvesting system that stores harvested energy in supercapacitors and is volage compatible with lithium-ion batteries. The use of supercapacitors instead of batteries enables DuraCap to extend the operational life time from tens of months to tens of years. DuraCap addresses two additional problems with micro-solar systems, namely cold booting and maximum power point tracking (MPPT). Cold booting is when the system starts running from the state of total exhaustion of stored energy, and it can be inefficient due to the long charging time of supercapacitors. We solve this problem by dedicating a smaller supercapacitor to this stage before handing over to the array of larger-value supercapacitors. To enable accurate and efficient MPPT, we propose and evaluate a bound-control circuit for PFM regulator switching. The DuraCap also contains an I-V tracer to obtain the I-V curve and P-V curve of the solar panel to enable self-configuring to match solar panels of different types and sizes. Two types of enhanced switch for power path switching are designed for low voltage control that reduces the power consumption. Experimental results show the DuraCap’s bound-control MPPT circuit, enhanced switch, and supercapacitor array achieve the highest conversion efficiency, thereby enabling low power consumption and long operational life time.

    Contents 1 1 Introduction 5 1.1 Problem Statement 5 1.2 Requirements and Objectives 6 1.3 Contributions 8 2 Background and Related Work 9 2.1 Energy Source 9 2.2 Energy Storage 11 2.3 Energy Harvesting Systems 14 3 DuraCap System Design 18 3.1 System Overview 18 3.2 System Detail 20 3.2.1 Solar Panel and Protection 20 3.2.2 Energy Storage 21 3.2.3 Power Supply 21 3.2.4 MPPT Circuitry 23 3.2.5 System Control 25 4 Implementation 32 4.1 System Hardware 32 4.2 System Operation 39 4.2.1 Cold Boot 39 4.2.2 Monitoring and Charging of Supercapacitor Array 39 4.2.3 MPPT Operation 40 5 Evaluation and Experiment 41 5.1 Experiment Setup 41 5.2 Experimental Result 43 5.2.1 Enhanced Switch 43 5.2.2 I-V Curve Tracing 45 5.2.3 Charging Comparison 45 6 Conclusion 50

    [1] BRUNELLI, D., BENINI, L., MOSER, C., AND THIELE, L. An efficient solar energy harvester for wireless sensor nodes. In DATE ’08: Proceedings of the conference on Design, automation and test in Europe (New York, NY, USA, 2008), ACM, pp. 104–109.
    [2] CHULSUNG PARK, CHOU, P. Ambimax: Autonomous energy harvesting platform for multisupply wireless sensor nodes. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked sensor systems (New York, NY, USA, 2006), Institute of Electrical and Electronics Engineers Inc., pp. 309–309.
    [3] FARANDA, R., AND LEVA, S. A comparative study of mppt techniques for pv systems. In AEE’08: Proceedings of the 7th WSEAS International Conference on Application of Electrical Engineering (Stevens Point, Wisconsin, USA, 2008), World Scientific and Engineering Academy and Society (WSEAS), pp. 100–105.
    [4] FARMER, J. R. A comparison of power harvesting techniques and related energy storage issues. Master’s thesis, Virginia Polytechnic Institute and State University, 2007.
    [5] JIANG, X., POLASTRE, J., AND CULLER, D. Perpetual environmentally powered sensor networks. In Information Processing in Sensor Networks, 2005. IPSN 2005. (2005), IPSN, pp. 463–468.
    [6] KRISHNA, M. Powering telecommunications network interfaces using photovoltaic cells and supercapacitors. In Journal of Technology and Business (JTB) (2007), pp. 73–84.
    [7] LI-QUN, L., AND ZHI-XIN, W. A rapid mppt algorithm based on the research of solar cell’s diode factor and reverse saturation current. WTOS 7, 5 (2008), 568–579.
    [8] LIN, K., YU, J., HSU, J., ZAHEDI, S., LEE, D., FRIEDMAN, J., KANSAL, A., RAGHUNATHAN, V., AND SRIVASTAVA, M. Heliomote: enabling long-lived sensor networks through solar energy harvesting. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked sensor systems (New York, NY, USA, 2005), ACM, pp. 309–309.
    [9] MAXIM. Maxim integrated products. http://www.maxim-ic.com/, 2009.
    [10] MICROCHIP. Microchip technology inc. http://www.microchip.com/, 2009.
    [11] NATIONAL. National semiconductor inc. http://www.national.com/, 2009.
    [12] PAC. Pac electronics inc. http://www.pactw.com.tw/, 2009.
    [13] RAGHUNATHAN, V., KANSAL, A., HSU, J., FRIEDMAN, J., AND SRIVASTAVA, M. Design considerations for solar energy harvesting wireless embedded systems. In IPSN ’05: Proceedings of the 4th international symposium on Information processing in sensor networks (Piscataway, NJ, USA, 2005), IEEE Press, p. 64.
    [14] S., D. Basics of design: Battery power management. In Supplement to Electronic Design (2004).
    [15] SHAO, H., TSUI, C.-Y., AND KI, W.-H. An inductor-less mppt design for light energy harvesting systems. In ASP-DAC ’09: Proceedings of the 2009 Conference on Asia and South Pacific Design Automation (Piscataway, NJ, USA, 2009), IEEE Press, pp. 101–102.
    [16] SIMJEE, F., AND CHOU, P. H. Everlast: long-life, supercapacitor-operated wireless sensor node. In ISLPED ’06: Proceedings of the 2006 international symposium on Low power electronics and design (New York, NY, USA, 2006), ACM, pp. 197–202.
    [17] SIMJEE, F., SHARMA, D., AND CHOU, P. H. Everlast: long-life, supercapacitor-operated wireless sensor node. In SenSys ’05: Proceedings of the 3rd international conference on Embedded networked sensor systems (New York, NY, USA, 2005), ACM, pp. 315–315.
    [18] SMITH, T., MARS, J., AND TURNER, G. Using supercapacitors to improve battery performance. In Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual (2002), IEEE, pp. 124–128 vol.1.
    [19] TI. Texas instruments incorporated. http://www.ti.com/, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE