研究生: |
吳家豪 Chia-Hao Wu |
---|---|
論文名稱: |
AlXFeCoNiCrMo0.5高熵合金之腐蝕及電化學性質 Corrosion and Electrochemical Properties of AlXFeCoNiCrMo0.5 Six-Component Hight Entropy Alloys |
指導教授: |
施漢章
Han-Chang Shih |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 腐蝕 、高熵合金 、阻抗頻普分析 |
外文關鍵詞: | corrosion, high entropy alloy, EIS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
AlXFeCoNiCrMo0.5六元高熵合金,其成份與一般商業用的316不鏽鋼相近,以316不鏽鋼而言,Fe為主要成份,而Cr的添加有助於鈍態膜的形成,Mo之添加則有助於抗氯鹽之孔蝕。本高熵合金成份與316不鏽鋼相較,Al成份為最大差異之元素,所以改變Al成份之莫耳比進行探討並與316不鏽鋼相比較。
由金相照片可知Al成份的增加使合金中的樹枝相明顯增加,相對的也會對其腐蝕結果造成影響。不同的成份在0.5M硫酸水溶液中之極化結果顯示,隨著Al成份的增加腐蝕電位越趨向於活態,而腐蝕電流也隨之增加。然而在1M氯化鈉水溶液中Ecorr和Icorr成份沒有明顯的差異,但Al為0.5莫耳比時明顯有較大的孔蝕電位。由以上結果以及EIS的測試結果可以知道Al為0.5莫耳比時性質較好,故隨後以該成份與316不鏽鋼相比較。
由EIS圖譜分析可以看出,在OCP的條件下不論在0.5M硫酸水溶液或是1M氯化鈉水溶液中,Al0.5FeCoNiCrMo0.5比316不鏽鋼具有較大的腐蝕阻抗值(RP)。然而藉由在含不同濃度氯化鈉之0.5M硫酸水溶液的極化測試,可以知道Al0.5FeCoNiCrMo0.5對氯鹽較為敏感,較容易發生孔蝕現象,當氯化鈉含量為0.1M時即有孔蝕現象的發生。
1、黃國雄, “等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, 1996.
2、賴高廷, “高亂度合金微結構及性質探討” , 國立清華大學材料科學工程研究所碩士論文, 1998.
3、許雲翔,”以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究”,國立清華大學材料科學工程研究所碩士論文,2000.
4、洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti 高亂度合金之探討” , 國立清華大學材料科學工程研究所碩士論文, 2001.
5、陳家裕,“塗層用多元高熵合金之開發” , 國立清華大學材料科學工程研究所碩士論文, 2002.
6、童重縉, “Cu-Co-Ni-Cr-Al-Fe 高熵合金變形結構與高溫特性之研究” , 國立清華大學材料科學工程研究所碩士論文, 2002.
7、H. S. Chen, H. J. Leamy and C. E. Miller, “Preparation of Glassy Metal”, Annual Review of Materials Science, Vol10, 1980, pp 363-391.
8、B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, “A Mossbauer Study of Amorphous Alloy Fe67Co18B14Si1”, Journal of non-crystalline Solids, Vol 61-2, Iss JAN, 1984, pp 391-395.
9、Carlisle and H. Ben, “Neodymium Challenges Ferrite Magnet”, Machine Design, Vol 58, No 1, 1986, pp 24-30.
10、P. Haasen, “Metallic Glasses”, Journal of Non-Crystalline Solids, Vol 56, Iss 1-3, 1983, pp 191-199.
11、H. Jones, Rapid Solidification, of Metals and Alloys, Inst. Of Metallurgists, London, 1982.
12、F. G. Yost, “On the Use of Ti50Be40Zr10 As a Spring Material”, Journal of Materials Science, Vol 16, Iss 11, 1981, pp 3039-3044.
13、陳彥羽, 洪育德, 葉均蔚, 施漢章, “高亂度合金的金相與電化學極化之研究 – 在室溫下與其他鋼材做比較”, 防蝕工程 第十八卷第一期 25 – 40, 2004.
14、Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel”, Corros. Sci 47 (2005) 2679-2699.
15、Y. Y. Chen, T. Duval, U. D. Hung, J.W. Yeh, H. C. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corros. Sci. 47 (2005) 2257-2279.
16、F.I. Wei, J.T. Hsu, J.Y. Wu, H.C. Shih, J.C. Oung, “Applications of electrochemical hysteresis for constructing the experimental potential-pH diagram for steels in seawater”, Mat. Chem. and Phys., 37 (1994) 230-236.
17、張顧齡, “被覆氮化鉻鋼材的電化學行為研究”, 清華大學材料科學工程研究所博士論文, 2004.
18、Ku-ling Chang, Jyh-Wei Hsu, Xing Jian Guo, and Han C. Shih, “Effect of MEVVA-implanted Cr on the electrochemical behavior of CrN-coated steels”, J. Mater. Res., Vol. 19, No. 8, 2004.
19、Ku-ling Chang, S. Han, J. H. Lin, J. W. Hus, H. C. Shih, “The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”, Surface and Coatings Technology 172 (2003) 72-78.
20、張瑋倫, 杜宗附, 開物, “鐵鈷鎳基等莫耳合金之高溫硫化行為研究”, 防蝕工程 第十九卷 第一期 91-109, 2005.
21、林家旭,”Fe2AlCoCrNiMo0.5高熵合金在室溫下之電化學性質”, 國立清華大學材料工程研究所碩士論文, 2005.
22、Denny A. Jones, “Principle and Prevention of Corrsion”, 2nd ed., Simon & Schuster, 1996.
23、Robert G. Kelly, John R. Scully, David W. Shoesmith, Rudolph G. Buchheit, “ELECTROCHEMICAL TECHNIQUES IN CORROSION SCIENCE AND ENGINEERING”, Marcel Dekker, Inc. New York, 2003.
24、Herbert H. Uhlig and R. Winston Revie, “Corrosion and Corrosion Control”, 3rd ed., John Wiley and sons, 1991.
25、Princeton Applied Research, “Basics of Electrochemical Impedance Spectroscopy”, Application Note AC-1
26、J. Creus, A. Billard, F. Sanchette, “Corrosion behavior of amorphous Al-Cr and Al-Cr-(N) coatings deposited by dc magnetron sputtering on mild steel substrate”, Thin Solid Films 466 (2004) 1-9.
27、JiMing Hu, Jin-Tao Zhang, Jian-Qing Zhang, Chu-nan Cao, “Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloy”, Corrosion Science 47 (2005) 2607-2618.
28、L. BIRRY, A. LASIA, “Studies of the hydrogen evolution reaction on Raney nickel-molybdenum”, Journal of Applied Electrochemistry 34: 735-749, 2004.
29、Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochem. Acta, 35 (1990) 1533.
30、M.R.F. Hurtado, P.T.A. Sumodjo, A.V. Benedetti, “Electrochemical studies with a Cu-5wt.%Ni alloy in 0.5 M H2SO4”, Electrochimica Acta 48 (2003) 2791-2798.
31、Christopher M.A. Brett, Lidia Dias, Bruno Trindade, Robert Fischer, Sascha Mies, “Characterisation by EIS of ternary Mg alloys synthesized by mechanical alloying”, Electrochimica Acta 51 (2006), 1752-1760.
32、F.M. Reis, H.G. de Melo, I. Costa, “EIS investigation on Al 5052 alloy surface preparation for self-assembling monolayer”, Electrochimica Acta 51 (2006), 1780-1788.
33、Liu Jianguo, Gong Gaoping, Yan Chuanwei, ”EIS study of corrosion behavior of organic coating/Dacromet composite systems”, Electrochimica Acta 50 (2005), 3320-3332.
34、A. Carnot, I. Frateur, S. Zanna, B. Tribollet, I. Dubois-Brugger, P. Marcus, ”Corrosion mechanisms of steel concrete moulds in contact with a demoulding agent studies by EIS and XPS”, Corrosion Science, 45 (2003) 2513-2524.
35、Y. Chen, T. Hong, M. Gopal, W.P. Jepsn, “EIS studies of a corrosion inhibitor behavior under multiphase flow condition”, Corrosion Science 42 (2000) 979-990.