簡易檢索 / 詳目顯示

研究生: 李亞諭
Li Ya-Yu
論文名稱: 新型低漏電非晶矽薄膜電晶體全銅化製作與機制研究
Study on Fabrication and Mechanism of Novel a-Si:H Thin Film Transistor with Fully Copper Metalization
指導教授: 葉鳳生
Fon-Shan Yeh
張鼎張
Ting-Chang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 62
中文關鍵詞: 薄膜電晶體
外文關鍵詞: TFT, Copper
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當近年來的TFT-LCD的產業趨向發展大面積,高解析度的AM-LCD時,同時遇到了一些問題。當TFT-LCD尺寸變的更大,解析度越高時,閘極金屬的電阻及電容帶來的問題已經不可忽略了。其中包括了影像失真,最簡單的解決方法是使閘極導線更厚且更寬,但會使對比度降低。因此,應用低阻值材料銅作為閘極金屬對於解決RC delay是一種選擇。除此之外,銅的電子遷移率的活化能高達0.97eV,所以對電子遷移有較好的抵抗性。
    但是使用銅當作閘極材料也會遇到一些問題:對玻璃基板的附著性差,蝕刻的難度等諸多困難。
    本研究裡,利用Cu與CuMg兩層金屬作為非晶矽薄膜電晶體的閘極及源極汲極金屬已經成功被開發。我們引入Cu與CuMg合金克服銅與玻璃基板的附著性問題。而且,一種在傳統電路板使用的酸成功作為蝕刻出銅閘極形狀的溶液,蝕刻出的銅金屬形狀正是閘極金屬需要的坡度形狀,且蝕刻誤差甚小。實驗結果顯示,我們成功製造出具優異特性的非晶矽薄膜電晶體。
    對於非晶矽薄膜電晶體在關閉狀態時源自光漏電的訊號誤差,我們利用氧化銦錫(ITO)來取代傳統薄膜電晶體結構中的源極與汲極作為有效的抑制方法。在光強度3300cd/m2的背光源下,光漏電表現出一種明顯的轉換。在本文中,我們將會對源極與汲極的能帶作一討論。


    In the recently TFT-LCD fabrication demands, some problems exist while developing large-area AM-LCD with high resolution. As TFT-LCD becomes larger in size and higher in resolution, we can not neglect the influence brought by resistance and capacitor of gate. So that incomplete image comes up but it can be solved by making thicker and wider lines at a loss of aperture ratio. Therefore, applying copper with low resistivity property material be gate metal is a way to resolve RC delay (Resistance Capacitor Delay). And then copper has better resistance to electro-migration because its activation energy of electro-migration reaches about 0.97eV.
    But taking copper as gate material also encounters some problems: poor adhesion to glass substrates, etching method etc...
    The feasibility of using Cu/CuMg as a gate electrode and a source/drain metal for a-Si:H TFT has been investigated in this work. The issue of adhesion between the Cu film and glass substrates has been overcome by introducing the Cu/CuMg alloy. Furthermore, a wet etching process of Cu-based gate metal has been proposed by using the copper etchant in the conventional printed circuit boards (PCBs). The experimental result showed superior performance of a-Si:H TFT with desired electrode taper angle and minimal loss of critical dimension.
    In addition, for effectively reducing the off-state signal loss resulted from the a-Si:H TFTs photo leakage current, the a-Si:H TFTs with the use of ITO as source-drain metal have been fabricated for this study. A remarkable transformation in photo leakage current has been observed under the 3300cd/m2 CCFL backlight illumination. The source-drain barrier height engineering has been proposed for this study.

    Abstract (Chinese) …………………………………………………..…...I Abstract (English) …………………………………...………….………III Acknowledgment (Chinese) ……………………………………….……V Content ……...………………………….….………….……………......VI Figure Captions …………………………………....……..…...............VIII Table Captions.........................................................................................XII Chapter 1 Introduction 1-1. General Background………………………………………..1 1-2. Motivation ……………………………….……………..….2 1-3. Thesis Outline…………………………….……………...…5 Chapter.2 AMLCD Operations & the Photo Conduction Mechanism 2-1. Basic properties of AMLCD 2-1-1. Physics of a-Si:H TFTs……………………………....7 2-1-2. Operations of the LCD Panel…...…………….……….8 2-2. Leakage Current of the TFTs 2-2-1. Photosensitivity of a-Si TFTs……………… ……….10 2-2-2. Mechanism of the Schottky Barrier………………….11 Chapter 3 New technology of metal engineering 3-1. The Requirement of metals for TFT 3-1-1 Candidate metal for interconnection……………………….13 3-1-2 Comparison with Al and Ag………………………………..14 3-2 Issues with copper be TFT metal and process 3-2-1 Issues of TFT with Cu gate…………...……………………15 3-2-2 Development of Cu gate………………………………...…17 3-2-3 result and discussion……………………………………….18 3-3 Issues of TFT with Cu S/D 3-3-1 Development of Cu Source and Drain……………………..21 3-3-2 result and discussion……………………………………….21 Chapter 4 New application of ITO to Reduce Leakage Current 4-1 The schottky leakage current of Conventional TFT……….………..24 4-2 The ITO S/D metal structure 4-2-1 The Process Flow of ITO S/D Structure and Effect of Heterojunction Between ITO and a-Si………………….25 4-2-2 ITO New Structure TFT V.S. Conventional Structure TFT……………………………….……………………..26 4-3 The Novel Improved Structure 4-3-1 The Process flow of The Novel Improved Structure……..27 4-3-2 Results and Discussion…………………………………...28 Chapter 5 Conclusion………………………………………………….30 References…………………...…..…………………………………...…32 Figures………………………………………………………………......39 Vita……………………………………………………………………....62

    Reference
    Chapter 1
    [1.1] H. Yamamoto, H. Matsumaru, K. Shirahashi, M. Nakatani, A. Sasano, N. Konishi, K. Tsutsui, and T. Tsukada, IEDM Tech. Dig.,851 (1990)
    [1.2] G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y. Matsukawa, and A. Sasano, IEEE Trans. Elec. Devices., 41, 1120(1994).
    [1.3] D. B. Thomason, T. N. Jackson, IEEE ELECTRON DEVICE LETTERS, 18,8(1997).
    [1.4] D. B. Thomason, T. N. Jackson, IEEE ELECTRON DEVICE LETTERS, 19, 4(1998).
    [1.5]G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y. Matsukawa, A. Sasano, Electron Devices, IEEE Transactions on ., 41, 7(1994)
    [1.6]R. M. A. Dawson, M. G. Kane, SID Tech. Dig., 372(2001)
    [1.7]T. Tsujimura, Y. Kobayashi, K. Murayama, A. Tanaka, M. Morooka, E. Fukumoto, H. Fujimoto, J. Sekine, K. Kanoh, K. Takeda, K. Miwa, M. Asano, N. Ikeda, S. Kohara, and S. Ono, SID Tech. Dig.,6(2003)
    [1.8]Y. He, R. Hattori, J. Kanicki, IEEE TRANSACTIONS ON ELECTRON DEVICE, 48, 7(2001).
    [1.9]A. Nathan, D. Striakhilev, .Pervati, .K. akariya,.A.Kumar, K. S. Karim, A. Sazonov, Materials and Devices Technology as held at the 2003 MRS Spring Meeting.; 29(2003)
    [1.10]蔡昕辰,『鈀金屬奈米粒子應用於銅製程積體電以無電鍍電化行沉積導電層之研究』,國立清華大學,2002.
    [1.11]H.S. Rathore and D. Nguyen, ”Effect of Scaling of Interconnection” ,copper metallization for Sub-Micron Integrated, 8 ,May(1998).
    [1.12]H.S. Rathore and D. Nguyen,”Comparison of Properties of Interlayer Metals” ,copper metallization for Sub-Micron Integrated , 14 ,May(1998).
    [1.13] Yong Sup Hwang*, Gyoo Chul Jo, Gee Sung Chae and In Jae Chung “Copper Bus for TFT-LCD” IDMC2004
    [1.14] M. Akiyama, T. Kiyota, Y. Ikeda, T. Koizumi, M. Ikeda, and K. Suzuki, SID ’95 Digest, Society for Information Display, Florida , p. 158 (1995)
    [1.15] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, IDRC ’94 Digest, International Display Research Conference, CA, p. 369 (1994)
    [1.16] W. E. Spear, J. Non-Cryst. Solids 59/60, 1 (1983)

    Chapter 2
    [2.1] M. J. Powell, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 36. NO. 12. DECEMBER 1989
    [2.2] M. J. Powell. B. C. Easton, and D. H. Nicholls., J. Appl. Phys., vol. 53, pp. 5068-5078, 1982.
    [2.3] M. Shur and M. Hack, J. Appl. Phys., vol. 53, pp. 3831-3842., 1984.
    [2.4] M. Grunewald. P. Thomas, and D. Wurtz, Phys. Status Solidi (b), vol. 100, pp.139- 143, 1980.
    [2.5] R. L. Weisfield and D. A. Anderson, Phil. Mug. B, vol. 44, pp. 83-93, 1981.
    [2.6] T. Noda. Y. Ogawa, and T. Kurobe, Trans. IECE (Japan) E, vol. 64. pp. 134-140, 1981.
    [2.7] F. Djamdji and P. G. LeComber. Phil. Mag. B, vol. 56, pp. 31-50, 1987.
    [2.8] www.auo.com
    [2.9] Y. Kuo, THIN FILM TRANSISTORS Material and Process, Vol.1, pp.7(2004)
    [2.10] S. M. Sze, Physics of Semiconductor Devices, p. 402, Wiley, New York (1981).
    [2.11] C. van Berkel and M. J. Powell, J. Appl. Phps., vol. 60, pp. 1521-1527(1986)
    [2.12] S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology 2nd EDITION, Ch.7, section.1, Wiley, New York, 2001
    [2.13] H. C. Lin, K. L. Yeh, R. G. Huang, C. Y. Lin, T. Y. Huang, IEEE Electron Device Letters, 2001
    [2.14] K. L. Yeh, H. C. Lin, R. G. Huang, R. W. Tsai, T. Y. Huang, Jpn. J. Appl. Phys, 2002
    [2.15] H. C. Lin, K. L. Yeh, T. Y. Huang, R. G. Huang, S. M. Sze, IEEE Transactions on Electron Devices, 2002

    Chapter 3
    [3.1] J. D. Mcbrayer, R. M. Swansion and T. W. Sigmon, J. Electrochem. Soc., 133(1986)1243.
    [3.2] S. P. Murarka and Rl J . Gutmann, “Advanced multilayer metallization schemes with copper as inter connection metal” ,Thin Solid Films,
    236(1993)257-266.
    [3.3] H.S. Rathore and D. Nguyen,”Effect of Scaling of Interconnection” ,copper metallization for Sub-Micron Integrated , 8 ,May(1998).
    [3.4] H.S. Rathore and D. Nguyen,”Comparison of Properties of Interlayer Metals” ,copper metallization for Sub-Micron Integrated , 14 ,May(1998).
    [3.5] W. H. Lee, B. S. Cho, B. J. Kang, J. Y. Kim and J. G. Lee, “Enhanced properties of Ag alloy films for advanced TFT-Lcd’s” ,Journal of the Korean Physical Society, Vol. $0, No.1, January 2002, pp.110~114.
    [3.6] T. Arai, A. Makita, Y. Hiromasu and H. Takatsuji, “Mo-capped Al-Nd alloy for both gate and data buslines of liguid crystal diplays”, This Solid Films 383(2001)287-297.
    [3.7] E. Iwamura, T. Ohnishi, K. Yoshikawa, “Astudy of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs”, Thin Solid Films 270(1995)450-455
    [3.8] J. Lan and J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin-film transistor for Am-LCDs”, IEEE ElECTRON DEVICE LETTERS, Vol. 20, NO. 3, March 1999.
    [3.10] 游輝日,『疏水性奈米鈀用作無電鍍銅催化劑及其作為薄膜電晶體顯示器閘極陣列之研究』,國立清華大學,2006.
    [3.11] W. E. Howard, “Limitations and prospects of a-Si :H TFT’s,” J. Soc. Infom. Display, vol. 3, pp. 127–132, (1995)
    [3.12] S. Venkatesan et al., IEDM Tech. Dig., pp.769–772, (1997).
    [3.13] D. Edelstein et al., IEDM Tech. Dig., pp. 773–776, (1997).
    [3.14] K. Ono, Y. Imajo, I. Mori, R. Oke, S. Kato, K. Endo, and H. Ishino, SID‘05 DIGEST, p. 1848-1851, (2005).
    [3.15] Y. Yoshida, Y. Kikuchi, S. Daly, and M. Sugino, SID’05 DIGEST, p. 1852-1855, (2005)
    [3.16] H. Sirringhaus, S. D. Theiss, A. Kahn, and S. Wagner, “Self-passivated copper gates for amorphous silicon thin-film transistors”, IEEE ELECTRON DEVICE LETTERS, Vol. 18, August 1997.
    [3.17] S. W. Lee, K. S. Cho, B. K. Choo, and J. Jang, Member, “Copper Gate Hydrogenated Amorphous Silicon TFT With Thin Buffer Layers”, IEEE ELECTRON DEVICE LETTERS, VOL. 23, NO. 6, JUNE 2002
    [3.18] S. W. Lee, I. K. Woo, K. S. Cho, J. Jang, “ Hydrogenated am orphous silicon thin-film transistor using APC alloy for both gate and data bus lines”, Journal of Non-crystalline Solids 299-302 (2002) 1351-1354
    [3.19] P. M. Fryer, E. C. Colgan, E. Galligan,W. Graham, R. Horton, D. Hunt, K.Latzko, R. Nywening, L. Jenkins, R. John, P. Koke, Y. Kuo, F. Libsch, A. Lien, I. Lovas, R. Polastre, M. E. Rothwell, J. Souk, J.Wilson, R.Wisnieff,
    [3.20] E. Delamarche, M. Geissler, R. H. Magnuson, H. Schmid, and B. Michel,“Patterning NiB Electroless Deposited on Glass Using an Electroplated Cu Mask, Microcontact Printing, and Wet Etching”, Langmuir, 19, 5892-5897,
    [3.21] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, Conference Record IDRC, p. 369,(1994)
    [3.22] H. Morimoto, Proceedings of the 12th IDRC, p. 337, (1992)
    [3.23] P. S. Shin, T. C. Chang, S. M. Chen, M. S. Feng, D. Z. Peng, and C. Y.Chang, Surf. Coat. Technol. 108, 588 ,(1998).
    [3.24] C. Y. Liang, F. Y. Gan, T. C. Chang, P. T. Liu, and F. S. Yeh, Conference Record IDW 06, p. 1663 ,(2006)
    [3.25] C. M. Hong, and S. Wagner, IEEE Electron Device Lett., 21( 8), 384, (2000)
    [3.26] M. Dohjo, T. Aoki, K. Suzuki, M. Ikeda, T. Higuchi, and Y. Oana, Pro, SID 29,283 ,(1988).
    [3.27] N. Hirano, N. Ikeda, H. Yamaguchi, S. Nishida, Y. Hirai, and S. Kaneko, Conference Record IDRC, p. 369,(1994)
    [3.28] H. Morimoto, Proceedings of the 12th IDRC, p. 337, (1992)
    [3.29] P. S. Shin, T. C. Chang, S. M. Chen, M. S. Feng, D. Z. Peng, and C. Y.Chang, Surf. Coat. Technol., 108, 588 ,(1998).

    Chapter 4
    [4.1] TIBERIU MIZRAH AND DAVID ADLER IEEE TRANSACTIONS ON ELECTRON DEVICES VOL ED-24 NO 4 ,APRIL1977
    [4.2] R. L. Anderson, Appl. Phys. Lett., vol. 27, p. 691 (1975)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE