研究生: |
朱兆嘉 Jao-Jia Chu |
---|---|
論文名稱: |
太平洋紫杉醇對大鼠腦瘤細胞及人類非小細胞肺癌細胞的中間絲蛋白磷酸化與重組的影響 The Effect of Paclitaxel on Protein Phosphorylation and Reorganization of Intermediate Filaments in Rat Brain Tumor Cells and Human Non-small Cell Lung Cancer Cells |
指導教授: |
黎耀基
Yiu-Kai Lai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 紫杉醇 、中間絲 、微管 、磷酸化 、蛋白質激酶 、細胞骨架 、非小細胞肺癌 、抗藥性 、角質蛋白 |
外文關鍵詞: | paclitaxel, intermediate filament, protein kinase, cytoskeleton, non-small cell lung cancer, drug resistance, keratin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討 paclitaxel 對蛋白質磷酸化的影響,我們先以本實驗室熟悉的大鼠腦瘤細胞 9L 為材料,以 10-6 M paclitaxel 處理 6 小時後,以 [32P] orthophosphate 標幟兩小時後發現 57kD 蛋白質磷酸化程度大幅提高,我們以岡井田酸 (okadaic acid) 及 熱休克 (heat shock) 處理,配合西方氏墨點(Western blot)實驗,結果可確認此 57kD 蛋白質為 vimentin。此 paclitaxel 對 vimentin 過度磷酸化的作用有濃度及時間的依存性,以 10-6 M 及 12 小時最好,為瞭解此種活性由何種蛋白質激脢所作用,我們則用一系列激脢抑制劑處理,結果顯示 10 nM的 starosporine 及 200 nM 的 BIM 可抑制vimentin此種磷酸化,顯示此過程可能由 protein kinase C 作用。在細胞形態及細胞骨架重組的探討方面,我們先以掃描式電子顯微鏡觀察,發現 pacliatxel 的處理會使正常生長的 9L 細胞由平貼的形態逐漸圓起 (round up),由於細胞形態由細胞骨架支撐,所以我們以再以螢光顯微鏡觀察細胞骨架的組成,發現 vimentin 中間絲蛋白幾乎瓦解,並堆積在細胞核附近,此結果證明 paclitaxel 誘發 vimentin 的磷酸化現象是伴隨著結構的重組及整個細胞形態的變化。
有上述成果後,我們以人類非小細胞肺癌細胞株 H460 及其抗 paclitaxel 的抗藥性亞株 H460/TAX 為對象,發現 paclitaxel 除了誘發 vimentin 的過度磷酸化之外,亦造成 40 kD 的蛋白質的過`度磷酸化,以 Western blot 實驗證明此 40 kD 的磷酸蛋白為另一種中間絲蛋白即角質蛋白-19 (keratin 19, K19),在細胞骨架的組織變化上,H460與 H460/TAX 的 K19 亦類似 9L 的 vimentin ,在 paclitaxel 的作用下伴隨過度磷酸化而逐漸瓦解,並向細胞核堆積。
在濃度與時間效應的探討中我們發現 H460/TAX 比 H460 需要更高的藥物濃度與更長的作用時間方能使 K19達到最高的磷酸化程度,此差異可能由於細胞攝取藥物的量不同或其它活性差異導致,因此我們再以碳-十四標定的 7-([carbonyl-14C]-acetyl)paclitaxel 為追蹤劑來測定兩者的藥物累積量,結果顯示 H460/TAX 單位時間的藥物累積量少於 H460。但H460/TAX 的 P-glycoprotein 與 MRP 都沒有過度表現,顯示尚有未知的運輸蛋白主導著 H460/TAX 的細胞藥物攝取量。 K19 中間絲蛋白磷酸化與非小細胞肺癌抗藥性的關係是值得我們日後再進一步探討。
we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at10-6 M of taxol treatment for 8 h and diminished at higher (10-5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10-6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxoltreated cells, whereas the microtubules and the actin microfilaments were less affected. Based on these finding, we further study the mechanism of paclitaxel resistance in paclitaxel resistance. We have established a paclitaxel-resistant mutant cell line called H460/TAX, which was derived from human non-small cell lung cancers (NSCLC) H460. A 64-fold more resistant was shown in our assay compared with the parental cells. High specificity of drug resistance was also observed in that this mutant was not cross-resistant to several other anticancer drugs. Drug acccumulation in H460/TAX was significantly less than that in H460. Many endogenous protein profiles were intact, including the expression level of P-glycoprotein, multidrug resistance-associated protein, the 70 kDa heat shock proteins as well as the phosphorylation of Bcl-2 in H460/TAX cells except that total amount of a- and b-tubulins was higher in H460/TAX than in H460 cells. Higher drug concentration and longer treatment for paclitaxel were required in H460/TAX to exert the phosphorylation of keratin 19 which was then accompanied by reorganization of the intermediate filament and the microtubule networks. The fact that H460/TAX defects only in paclitaxel-targeted pathway and leaving intact with those previous proposed factors suggesting a yet identified factor might be independently involved in the mechanism of paclitaxel resistance in human lung cancers.
REFERENCES
1 Gazdar AF: The molecular and cellular basis of human lung cancer. Anticancer Res 14(1B): 261- 267, 1994.
2 Lilenbaum RC, Chen CS, Chidiac T, Schwarzenberger PO, Thant M, Versola M, Lane SR. Phase II randomized trial of vinorelbine and gemcitabine versus carboplatin and paclitaxel in advanced non-small-cell lung cancer. Ann Oncol. 2005 Jan;16(1):97-101
3 Choy H, Akerley W and Devore R: Paclitaxel, carboplatin and radiation therapy for non-small -cell lung cancer. Oncology 12: 80- 86, 1998.
4 Socinski MA: Single-agent paclitaxel in the treatment of advanced non-small cell lung cancer. Oncologist 4: 408- 416, 1999.
5 Wani MC, Taylor HL, Wall ME, Coggon P and McPhail AT: Plant antitumor agents. VI: The isolation and structure of taxol, a novel antileukemic and antitumor agents from Taxus brevifolia. J Am Chem Soc 93: 2325- 2327, 1971.
6 Derry WB, Wilson L and Jordan MA: Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34: 2203- 2211, 1995.
7 Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L: Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285: 197-203,1999.
8 Long BH and Fairchild CR: Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res 54: 4355- 4361, 1994.
9 Manthey CL, Perera PY, Salkowski CA and Vogel SN: Taxol provides a second signal for murine macrophage tumoricidal activity. J Immunol 152: 825- 831, 1994.
10 Bhalla K, Huang Y, Tang C, Self S, Ray S, Mahoney ME, Ponnathpur V, Tourkina E, Ibrado AM, Bullock G et al: Characterization of a human myeloid leukemia cell line highly resistant to taxol. Leukemia 8: 465- 475, 1994.
11 Binaschi M, Supino R, Gambetta RA, Giaccone G, Prosperi E, Capranico G, Cataldo I and Zunino F: MRP gene overexpression in a human doxorubucin-resistant SCLC cell line: alterations in cellular pharmacokinetics and in pattern of cross-resistance. Int J Cancer 62: 84- 89,1995.
12 Haber M, Burkhart CA, Regl DL, Madafiglio J, Norris MD and Horwitz SB: Altered expression of Mb 2, the class II beta-tubulin isotype, in a murine J774.2 cell line with a high level of taxol resistance. J Biol Chem 270: 31269- 31275, 1995.
13 Kavallaris M, Kuo DYS, Burkhart CA, Regl DL, Norris MD, Haber M, and Horwitz SB: Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J Clin Invest 100: 1282-1293, 1997.
14 Ahmad S, Ahuja R, Venner TJ and Gupta RS: Identification of a protein altered in mutants resistant to microtubules as a member of the major heat shock protein (hsp70) family. Mol Cell Biol 10: 5160- 5165, 1990.
15 Blagosklonny MV, Fojo T: Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 8: 151- 156, 1999.
16 Mosmann T: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55- 63, 1983.
17 Rao CS, Chu JJ, Liu RS, Lai YK: Synthesis and evaluation of [14C]-labelled and fluorescent-tagged paclitaxel derivatives as new biological probes. Bioorg Med Chem 6: 2193- 2204,1998.
18 Laemmli UK: Clevege of structural proteins during the assembly of the head of bacteriophage. Nature 227: 680- 685, 1970.
19 Lai YK, Shen CH, Cheng TJ, Hou MC and Lee WC: Enhanced phosphorylation of a 65 kDa protein is associated with rapid induction of stress proteins in 9L rat brain tumor cells. J Cell Biochem 51: 369-379, 1993.
20 Chu JJ, Chen KD, Lin YL, Fei CY, Chiang AS, Chiang CD and Lai YK: Taxol induces concomitant hyperphosphorylation and reorganization of vimentin intermediate filaments in 9L rat brain tumor cells. J Cell Biochem 68: 472- 483, 1998.
21 Haldar S, Jena N, Croce CM: Inactivation of Bcl-2 by phosphorylation. Proc Natl Acad Sci U S A 92: 4507-4511, 1995.
22 Lee JS, Scala S, Matsumoto Y, Dickstein B, Robey R, Zhan Z, Altenberg G and Bates SE: Reduced drug accumulation and multidrug resistance in human breast cancer cells without associated P-glycoprotein or MRP overexpression. J Cell Biochem 65: 513- 526, 1997.
23 Minotti AM, Barlow SB and Cabral F: Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J Biol Chem 266: 3987- 3994, 1991.
24 Ranganathan S, Benetatos CA, Colarusso PJ, Dexter DW and Hudes GR: Altered beta-tubulin isotype expression in paclitaxel-resistant human prostate carcinoma cells. Br J Cancer 77: 562- 566, 1998.
25 Banerjee A and Kasmala LT: Differential assembly kinetics of a tubulin isoforms in the presence of paclitaxel. Biochem Biophys Res Commun 245: 349- 351. 1998
26 Giannakakou P, Sackett DL, Kang YK, Zhan Z, Buters JT, Fojo T, and Poruchynsky MS: Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J Biol Chem 271: 17118- 17125, 1997.
27 Gupta RS: Microtubules, mitochondria, and molecular chaperones: a new hypothesis for in vivo assembly of microtubules. Biochem Cell Biol 68: 1352-1363, 1990.
28 Lee WC, Lin KY, Chen KD and Lai YK: Induction of HSP70 is associated with vincristine resistance in heat-shocked 9L rat brain tumor cells. Br J Cancer 66: 653- 659, 1992.
29 Haldar S, Basu A, Croce CM: Bcl2 is the guardian of microtubule integrity. Cancer Res 57: 229-233, 1997.
30 Brechot JM, Chevret S, Nataf J, Le Gall C, Fretault J, Rochemaure J and Chastang C: Diagnostic and prognostic value of Cyfra 21-1 compared with other tumor markers in patients with non-small cell lung cancer: a prospective study of 116 patients. Eur J Cancer 33: 385- 391, 1997.
31 Bichat F, Mouawad R, Solis-Recendez G, Khayat D and Bastian G: Cytoskeleton alteration in MCF7R cells, a multidrug resistant human breast cancer cell line. Anticancer Res 17: 3393- 3401, 1997.
32 Trevor KT, McGurie JG and Leonova EV: Association of vimentin intermediate filament with the centrosome. J Cell Sci 108: 343- 356, 1995.
33Vilalta PM, Zhang L, Hamm-Alvarez SF: A novel taxol-induced vimentin phosphorylation and stabilization revealed by studies on stable microtubules and vimentin intermediate filaments. J Cell Sci 111:1841-52, 1998.
Ando S, Tanabe K, Gonda Y, Sato C, Inagaki M (1989): Domain and sequence specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 28:2974–2979
Ando S, Tokui T,Yamauchi T, Sugiura H, Tanabe K, Inagaki M (1991): Evidence that Ser-82 is a unique phosphorylation site on vimentin for Ca2(1)-calmodulin-dependent protein kinase II. Biochem Biophys Res Commun 175: 955–962.
Bershadsky AD, Vasiliev JM (1988): ‘‘Cytoskeleton.’’ New York: Plenum Press.
Blagosklonny MV, Schulte TW, Nguyen P, Mimnaugh EG, Trepel J, Neckers L (1995): Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res 55:4623–4626.
Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM (1996): Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 56:1851–1854.
Blagosklonny MV, Giannakakou P, el-Deiry WS, Kingston DG, Higgs PI, Neckers L, Fojo T (1997): Raf-1/bcl-2 phosphorylation: A step from microtubule damage to cell death. Cancer Res 57:130–135.
Bloom GS, Vallee RB (1983): Association of microtubule associated protein 2 MAP2 with microtubules and intermediate filaments in cultured brain cells. J Cell Biol 96:1523–1531.
Cabral F, Gottesman MM (1979): Phosphorylation of the 10-nm filament protein from Chinese hamster ovary cells. J Biol Chem 254:6203–6206.
Chen KD, Chu JJ, Lai YK (1996): Modulation of protein phosphorylation and stress protein expression by okadaic acid on heat-shock cells. J Cell Biochem 61:255–265.
Cheng TJ, Lai YK (1994): Transient increase in vimentin phosphorylation and vimentin-HSC70 association in 9L rat brain tumor cells experiencing heat-shock. J Cell Biochem 54:100–109.
Chou YH, Bischoff JR, Beach D, Goldman RD (1990): Intermediate filament organization during mitosis is mediated by p34cdc2 phosphorylation of vimentin. Cell 62:1063– 1071.
Chou YH, Ngai KL, Goldman RD (1991): The regulation of intermediate filament reorganization in mitosis. J BiolChem 266:7325–7328.
Chou YH, Opal P, Quinlan RA, Goldman RD (1996): The relative roles of specific N- and C-terminal phosphorylation sites in the disassembly of intermediate filament in mitotic BHK-21 cells. J Cell Sci 109:817–826.
Cooper JA, Sefton BM, Hunter T (1983): Detection and quantification of phosphotyrosine in proteins. Methods Enzymol 99:387–403. Das KC, White CW (1997) Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem 272:14914–14920.
Ding A, Chen B, Fuortes M, Blum E (1996): Association of mitogen-activated protein kinases with microtubules in mouse macrophages. J Exp Med 183:1899–1904.
Draberova E, Draber P (1993): A microtubule-interacting protein involved in coalignment of vimentin intermediate filaments with microtubules. J Cell Sci 106:1263–1273.
Dunton CJ (1997) New options for the treatment of advanced ovarian cancer. Semin Oncol 24 (1 suppl 5):S5–S2S511.
Eriksson JE, Brautigan DL, Vallee R, Olmsted J, Fujiki H, Goldman RD (1992): Cytoskeletal integrity in interphase cells requires protein phosphatase activity. Proc Natl Acad Sci USA89:11093–11097.
Escribano J, Rozengurt E (1988) cyclic AMP increasing agents rapidly stimulate vimentin phosphorylation in quiescent cultures of Swiss 3T3 cells. J Cell Physiol 137:223–234.
Evans RM (1988): Cyclic AMP-dependent protein kinaseinduced vimentin filament disassembly involves modification of the N-terminal domain of intermediate filament subunits. FEBS Lett 234:73–78.
Foisner R (1997): Dynamic organization of intermediate filaments and associated proteins during the cell cycle. Bioessays 19:297–305.
Fuchs E, Weber K (1994): Intermediate filaments: structure, dynamics, function and disease. Annu Rev Biochem 63:345–382.
Gaitanos TN, Buey RM, Diaz JF, Northcote PT, Teesdale-Spittle P, Andreu JM, Miller JH. Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. 2004 Aug 1;64(15):5063-7.
Gard KL, Lazarides E (1982): Analysis of desmin and vimentin phosphopeptide in cultured avian myogenic cells and their modulation by 8-bromo-adenosine 38.58-
cyclic monophosphate. Proc Natl Acad Sci USA 79:6912– 6916.
Goldman RD (1971): The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol 51:752–762.
Goldman RD, Hill B, Steinert P, Whitman MJ, Zackroff RV (1980): Intermediate filament-microtubule interaction: Evidence in support of common organization center. In Debrabander, DeMey (eds): ‘‘Microtubules and Microtubule Inhibitor.’’ Netherlands: Elsevier-North Holland, pp91–102.
Goldman RD, Khuon S, Chou YH, Opal P, Steinert PM (1996): The function of intermediate filaments in cell shape and cytoskeletal integrity. J Cell Biol 134:971–983.
Gurland G, Gundersen GG (1995): Stable, detyrosinated microtubules function to localize vimentin intermediate filaments in fibroblasts. J Cell Biol 131:1275–1290.
Gyoeva FK, Gelfand VI (1991): Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353:445–448.
Harrison BC, Mobley PL (1991): Phorbol myristate acetate and 8-bromo-cyclic AMP-induced phosphorylation of glia fibrillary acidic protein and vimentin in astrocytes: Comparison of phosphorylation sites. J Neurochem 56:1724-1730.
Helfand BT, Chang L, Goldman RD. Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci. 2004 Jan 15;117(Pt 2):133-41.
Henricson BE, Carboni JM, Burkhardt AL, Vogel SN (1995): LPS and Taxol activate Lyn kinase autophosphorylation in Lps(n), but not in Lps(d), macrophages. Mol Med 1:428–435.
Ho DT, Roberge M (1997): The antitumor drug fostriecin induces vimentin hyperphosphorylation and intermediate filament reorganization. Carcinogenesis 17:967–972.
Hollenbeck PJ, Bershadsky AD, Pletjushkina OY, Tint IS, Vasiliev JM (1989): Intermediate filament collapse is an ATP-dependent and actin-dependent process. J Cell Sci 92:621–631.
Horwitz SB (1992): Mechanism of action of taxol. Trends Pharmacol Sci 13:134–136.
Huang CK, Devanne JF, Kennedy SP (1988): Vimentin, a cytoskeletal substrate of protein kinase C. Biochem Biophys Res Commun 150:1006–1011
.
Huang TJ, Lee TT, Lee WC, Lai YK, Yu JS, Yang SD (1994): Autophosphorylation-dependent protein kinase phosphorylatesSer25, Ser38, Ser65, Ser71, and Ser411, in vimentin and thereby inhibits cytoskeletal intermediate filament assembly. J Prot Chem 13:417–525.
Hyams JS, Lloyd CW (1994): Microtubules. New York: Wiley-Liss Jordan MA, Toso RJ, Thrower D, Wilson L (1993): Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90:9552–9556.
Jun CD, Choi BM, Kim HM, Chung HT (1995): Involvement of protein kinase C during taxol-induced activation of murine peritoneal macrophages. J Immunol 154:6541– 6547.
Kelly RB (1990): Microtubules, membrane traffic, and cell organization. Cell 61:5–7.
Ku NO, Liao J, Chou CF, Omary MB (1996): Implications of intermediate filament protein phosphorylation. Cancer Metastasis Rev 15:429–444.
Laemmli UK (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227: 680–685.
Lai YK, Lee WC, Chen KD (1994): Vimentin serves as a phosphate sink during the apparent activation of protein kinases by okadaic acid in mammalian cells. J Cell Biochem 53:161–168.
Lai YK, Shen CH, Cheng TJ, Hou MC, Lee WC (1993): Enhanced phosphorylation of a 65 kDa protein is associated with rapid induction of stress proteins in 9L rat brain tumor cells. J Cell Biochem 51:369–379.
Lamb NJC, Fernandex A, Feramisco JR, Welch WJ (1989): Modulation of vimentin containing intermediate filament distribution and phosphorylation in living fibroblasts by the cAMP-dependent protein kinase. J Cell Biol 108:2409–2422.
Lee WC, Yu JS, Yang SD, Lai YK (1992): Reversible hyperphosphorylation and reorganization of vimentin intermediate filaments by okadaic acid in 9L rat brain tumor cell. J Cell Biochem 49:373–393.
Lee WC, Lee YC, Perng MD, Chen CM, Lai YK (1993): Induction of vimentin modification and vimentin-HSP72 association by withangulatin A in 9L rat brain tumor cells. J Cell Biochem 53:1–13.
Lee LF, Schuerer-Maly CC, Lofquist AK, van Haaften-Day C, Ting JP, White CM, Martin BK, Haskill JS (1996): Taxol-dependent transcriptional activation of IL-8 expression in a subset of human ovarian cancer. Cancer Res 56:1303–1308.
Long BH, Fairchild CR (1994): Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telophase. Cancer Res 54:4355–4361.
Maniotis AJ, Chen CS, Ingber DE (1997): Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA94:849–854.
Matsuoka Y, Nishizawa K, Yano T, Shibata M, Ando S, Takahashi T, Inagaki M (1992): Two different protein kinases act on a different time schedule as glial filament kinases during mitosis. EMBO J 11:2895–2902.
Matsuzawa K, Kosako H, Inagaki N, Shibata H, Mukai H, Ono Y, Amano M, Kaibuchi K, Matsuura Y, Azuma I, Inagaki M (1997): Domain-specific phosphorylation of vimentin and glial fibrillary acidic protein by PKN. Biochem Biophys Res Commun 234:621–625.
Nabholtz JM, Gligorov J. The role of taxanes in the treatment of breast cancer. Expert Opin Pharmacother. 2005 Jul;6(7):1073-94.
Nelson WJ, Traub P (1983): Proteolysis of vimentin and desmin by the Ca21-activated proteinase specific for these intermediate filament proteins. Mol Cell Biol 3:1146– 1156.
Nishio K, Arioka H, Ishida T, Fukumoto H, Kurokawa H Sata M, Ohata M, Saijo N (1995): Enhanced interaction between tubulin and microtubule-associated protein 2 via inhibition of MAP kinase and CDC2 kinase by paclitaxel. Int J Cancer 63:688–693.
Nogales E, Wolf SG, Khan IA, Luduena RF, Downing KH (1995): Structure of tubulin at 6.5Å and location of the taxol-binding sites. Nature 375:424–427.
O’Connor CM, Gard DL, Lazarides E (1981): Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases. Cell 23:135–143.
Orr,G.A., Verdier-Pinard,P., McDaid,H. and Horwitz,S.B. ( (2003) ) Mechanisms of Taxol-resistance related to microtubules. Oncogene, , 22, , 7280–7295.
Perng MD, Cheng TJ, Chen CM, Lai YK (1994): Induction of aggregation and augmentation of protein kinase mediated phosphorylation of purified vimentin intermediate filaments by withangulatin A. Mol Pharmacol 46:612– 617.
Rao S, Krauss NE, Heerding JM, Swindell CS, Ringel I, Orr GA, Horwitz SB (1994): 38-(p-azidobenzamido) taxol photolabeleds the N-terminal 31 amino acids of beta-tubulin. J Biol Chem 269:3132–3124.
Rao S, Orr GA, Chaudhary AG, Kingston DGI, Horwitz SB (1995): Characterization of the taxol binding site on the microtubule. J Biol Chem 270:20235–20238.
Schiff PB, Horwitz SB (1980): Taxol stabilizes microtubules in mouse fibroblast cells. Proc NatlAcad Sci USA77:1561–1565.
Schiff PB, Horwitz SB (1981): Taxol assembles tubulin in the absence of exogenous quanosine 58-triphosphate or microtubule-associated proteins. Biochemistry 20:3247– 3252.
Seidman AD, Hudis CA, Raptis G, Baselga J, Fennelly D, Norton L (1997): Paclitaxel for breast cancer: The MemorialSloan-Kettering Cancer Center experience. Oncology11(3 suppl 2):20–28.
Skalli O, Goldman RD (1991): Recent insights into the assembly, dynamics, and function of intermediate filament networks. Cell Motil Cytoskeleton 19:67–79.
Spruill WA, Steiner AL, Tres LL, Kierszenbaum AL (1983): Follicle-stimulating hormone-dependent phosphorylation of vimentin in cultures of rat Sertoli cells. Proc Natl Acad Sci USA80:993–997.
Stefanovic S, Windsor M, Nagata KI, Inagaki M, Wileman T. Vimentin rearrangement during African swine fever virus infection involves retrograde transport along microtubules and phosphorylation of vimentin by calcium calmodulin kinase II. J Virol. 2005 Sep;79(18):11766-75.
Sternberger LA, Sternberger NH (1983): Monoclonal antibodies distinguish phosphorylated and non-phosphorylated neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130.
Stewart M (1993): Intermediate filament structure and assembly. Curr Opin Cell Biol 5:3–11. Svitkina TM, Verkhovsky AB, Borisy GG (1996): Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 135:991–1007.
Takai Y, Ogawara M, Tomono Y, Moritoh C, Imajoh-Ohmi S, Tsutsumi O, Taketani Y, Inagaki M (1996): Mitosisspecific phosphorylation of vimentin by protein kinase Ccoupled with reorganization of intracellular membranes. J Cell Biol 133:141–149.
Thompson WC, Wilson L, Purich DL (1981): Taxol induces microtubule assembly at low temperatures. Cell Motil Cytoskeleton 1:445–454.
Trevor KT, McGurire JG, Leonova EV (1995): Association of vimentin intermediate filaments with the centrosome. J Cell Sci 108:343–356.
Tsujimura K, Oagawara M, TakeuchiY, Imajoh-Ohmi S, Ha MH, Inagaki M (1994): visualization and function of vimentin phosphorylation by cdc2 kinase during mitosis. J Biol Chem 269:31097–31106.
Wani MC, Taylor HL, Wall ME, Coggan P, Mcphail AT (1971): Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327.
Weizsaecker M, Deen DF, Rosenblum ML, Hoshino T, Gutin PH, BakerM(1981): The 9L rat brain tumor: Description and application of animal model. J Neurol 224:183–192.
Wolfson M, Yang CP, Horwitz SB (1997): Taxol induces tyrosine phosphorylation of Shc and its association with Grb2 in murine RAW 264.7 cells. Int J Cancer 70:248– 252.
Wyatt A, Lincoln TM, Pryzwansky KB (1991): Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl peptide stimulated neutrophils. J Biol Chem 266:21274–21280.
Yang HY, Lieska N, GoldmanA, Goldman RD (1992): Colchicine- sensitive and colchicine-insensitive intermediate filament system distinguished by a new intermediate filament- associated protein, IFAP-70/280kD. Cell Moti Cytoskeleton 22:185–199.
Yatsunami J, Fujiki H, Suganuma M, Yoshizawa S, Eriksson JE, Olson MO, Goldman RD (1991): Vimentin is hyperphosphorylated in primary human fibroblasts treated with okadaic acid. Biochem Biophys Res Commun 177:1165–1170.
Yusuf, R.Z., Duan,Z., Lamendola,D.E., Penson,R.T. and Seiden,M.V. (2003) Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr. Cancer Drug Targets, , 3, , 1–19.