簡易檢索 / 詳目顯示

研究生: 江秉宸
CHIANG, PING-CHEN.
論文名稱: 應用機器學習於端銑刀壽命分級系統
Application of Machine Learning in End Mill Lifetime Classification System
指導教授: 葉哲良
Yeh, J.Andrew
口試委員: 鄭志鈞
CHENG, CHIH-CHUN
蔡孟勳
TSAI, MENG-HSUN
江振國
CHIANG, CHEN-KUO
駱遠
LO, YUAN
吳崇得
WU, CHUNG-TE
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 130
中文關鍵詞: 端銑刀刀具磨耗機械視覺三維重建機器學習
外文關鍵詞: End mill, Cutter wear, Machine vision, 3D reconstruction, Machine learning
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銑削加工是機械製造領域中常見的加工方法之一,其中銑削刀具的磨耗情況會對金屬機械加工成品精度與良率造成重大影響,而汰換磨耗刀具成為業者維持加工成品品質的重要方針,然刀具的汰換策略需評估磨損狀況與刀具壽命分類而訂定。故本研究期能從國際標準組織所訂定之磨耗機制做以規範,發展出客觀且標準化的壽命分類準則,進而能夠提供加工業者包含磨耗樣態與磨耗數值等輔助決策指標的壽命分級模型。
    有鑒於四刃端銑刀為機加工廠最常用的銑削刀具,因此本研究將著重在四刃端銑刀做為主要研究物件。本研究將延續先前所架設的光學檢測設備,優化其演算法及硬體系統,以期能達到更高系統解析度和自動化之需求,並加以分析刀具上所存在的磨耗樣態與系統重建之拓樸圖關聯,將量化出的磨耗特徵交由監督式機器學習模型進行多類別分類訓練,模型最終分類結果得以用於輔助判斷刀具壽命分級,利於機加工業決策者能應用此技術取代原先以人工檢測判讀、依循師傅經驗法則等,此類缺乏客觀的量化標準的壽命分級方式。


    Milling process is one of the common processing methods in mechanical manufacturing industry. The tool wear of milling tools causes a significant impact on the accuracy and yield of metal machining products. In the case replacing worn tools has become one of the companies’ decisions to maintain the quality in finished products. However, the strategy of tool replacement needs to be determined with reference to the evaluation of the wear level. It will directly affect milling tool life. Therefore, in this research, the wear mechanism and standards should follow the rules of International Standards Organization. Develop scientifically defined quantitative classification standards, and provide processing industry classification models including wear patterns and wear values and other decision-making indicators.
    In view of the fact that the four-flute end mill is the most commonly used for milling in machining factories, so this research will focus on the four-flute end mill as the main research object. This research will take over the automated optical inspection system which set up previously. To optimize the algorithm and hardware system, in order to achieve higher system resolution and rapid inspection requirements. Analyze the different wear patterns and condition value on the tools. The analysis feature will feed the supervised machine learning model for doing multicategory tool life classification. So that the decision makers in the machine processing industry can apply this quantitative classification model replacing the original manual detection and judgment which is depend on the master’s personal judgement. Develop an objective quantified standard life grading method to milling cutter.

    摘要 ii ABSTRACT iii 致謝 iv 目錄 v 圖目錄 1 表目錄 4 第一章 緒論 5 1.1. 前言 5 1.2. 文獻回顧 7 1.2.1. 端銑刀種類 7 1.2.2. 刀具磨耗機制 8 1.2.3. 刀具狀態監測技術 14 1.2.4. 機器視覺檢測技術 19 1.2.5. 市售刀具磨耗檢測技術 21 1.2.6. 業界刀具線下檢測流程 25 1.2.7. 機器學習 27 邏輯迴歸模型 28 決策樹模型 29 支援向量機 30 1.2.8. 集成學習 33 權重分類多數決投票模型 35 自適應增強演算法 36 1.3. 研究動機 37 第二章 理論基礎 39 2.1. 背光投影重建輪廓技術 39 2.1.1. 背光輪廓投影 40 2.1.2. 邊界投影輪廓強化 41 2.1.3. 三維輪廓拓樸重建 42 2.1.4. 磨耗深度數值提取 44 2.2. 量化磨耗樣態 46 2.2.1. ISO所規範磨耗樣態機制 47 2.2.2. 端銑刀可解析範圍判讀流程 48 2.2.3. 背光投影角度時序圖 54 2.2.4. 刀腹磨耗樣態量化 56 2.2.5. 缺口磨耗量化 59 2.2.6. 相位偏差量化資訊 63 第三章 自動化檢測系統 65 3.1. 系統架構 65 3.1.1. 硬體系統架構 66 3.1.2. 標準化檢測流程 67 3.1.3. 檢測數據輸出 72 3.2. 系統校驗 74 3.2.1. 系統解析度測試 74 3.2.2. 系統放大倍率與視野測試 77 3.2.3. 動力刀座偏擺測試 79 3.2.4. 系統實際可解析範圍測試 82 3.2.5. 深度資訊圖磨耗數值驗證 85 3.2.6. 系統操作流程時間 88 第四章 壽命分級模型 89 4.1. 機器學習模型訓練 89 4.1.1. 特徵資料集準備 89 4.1.2. 機器學習模型訓練 93 4.2. 壽命分類模型結果與討論 94 4.2.1. 資料集收斂曲線評估 95 4.2.2. 模型超參數微調 96 4.2.3. K-fold 交叉驗證 99 4.2.4. 分類模型測試結果與討論 101 4.2.5. 集成學習法結果與討論 102 4.2.6. 擷取資料集權衡測試 106 4.2.7. 壽命分類預測模型 109 第五章 結論 113 第六章 未來工作 116 參考文獻 117 附錄一 、待測刀具規格 121 附錄二 、遠心光源規格 122 附錄三 、遠心鏡頭規格 123 附錄四 、工業相機規格 124 附錄五 、步進馬達規格 125 附錄六 、動力刀座規格 126 附錄七 、工業相機規格 127 附錄八 、工具顯微鏡規格 128 附錄九 、驗證量刀儀規格 129 附錄十、程式碼連結 130

    [1] H. Shahabi and M. Ratnam, "In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision," The International Journal of Advanced Manufacturing Technology, vol. 40, no. 11, pp. 1148-1157, 2009.
    [2] F. W. Taylor, On the art of cutting metals. American society of mechanical engineers, 1906.
    [3] L. ENDMILL-WOTEK Precision Tools Co., "Introduction, features and types of solid end mills," 2020.
    [4] Wikipidia,"Cutter_Types_(Mill), resource from http://mindworks.shoutwiki.com/w iki/Cutter_Types_(Mill)," ed. JNKVV Jabalpur, Aug. 9, 2019.
    [5] E. P. DeGarmo, J. T. Black, R. A. Kohser, and B. E. Klamecki, Materials and process in manufacturing. Prentice Hall Upper Saddle River, 1997.
    [6] I. S. Organization(ISO), "Tool Life Testing in Milling—Part2: End Milling," pp. 8688-2, 1989.
    [7] M. A. Kuttolamadom, M. Laine Mears, and T. R. Kurfess, "On the volumetric assessment of tool wear in machining inserts with complex geometries—part 1: need, methodology, and standardization," Journal of manufacturing science and engineering, vol. 134, no. 5, 2012.
    [8] G. Byrne, D. Dornfeld, I. Inasaki, G. Ketteler, W. König, and R. Teti, "Tool condition monitoring (TCM)—the status of research and industrial application," CIRP annals, vol. 44, no. 2, pp. 541-567, 1995.
    [9] A. Siddhpura and R. Paurobally, "A review of flank wear prediction methods for tool condition monitoring in a turning process," The International Journal of Advanced Manufacturing Technology, vol. 65, no. 1-4, pp. 371-393, 2013.
    [10] William. EBERT, "Heavy equipment proximity sensor," U.S. Patent Application, no 12/925,506, 2012.
    [11] S. Kurada and C. Bradley, "A review of machine vision sensors for tool condition monitoring," Computers in industry, vol. 34, no. 1, pp. 55-72, 1997.
    [12] S. Jetley, "Applications of surface activation in metal cutting," in Proceedings of the Twenty-Fifth International Machine Tool Design and Research Conference, 1985.
    [13] Y. Yeşin and Z. Özel, "A study of cutting tool wear by neutron activation technique," Journal of radioanalytical and nuclear chemistry, vol. 99, no. 2, pp. 441-445, 1986.
    [14] M. Szydłowski, B. Powałka, M. Matuszak, and P. Kochmański, "Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance," Precision Engineering, vol. 44, pp. 236-244, 2016.
    [15] M. Sukeri, M. Zulhilmi Paiz Ismadi, A. Rahim Othman, and S. Kamaruddin, "Wear Detection of Drill Bit by Image-based Technique," in IOP Conference Series: Materials Science and Engineering, 2018.
    [16] D. Kong, Y. Chen, and N. Li, "Force-based tool wear estimation for milling process using Gaussian mixture hidden Markov models," The International Journal of Advanced Manufacturing Technology, vol. 92, no. 5-8, pp. 2853-2865, 2017.
    [17] B. Sick, "On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research," Mechanical systems and signal processing, vol. 16, no. 4, pp. 487-546, 2002.
    [18] M. Ahmad, M. Z. Nuawi, S. Abdullah, Z. Wahid, Z. Karim, and M. Dirhamsyah, "Development of tool wear machining monitoring using novel statistical analysis method, I-kaz™," Procedia Engineering, vol. 101, pp. 355-362, 2015.
    [19] E. Haddadi, M. R Shabgha, and M. M Ettefag, "Effect of different tool edge conditions on wear detection by vibration spectrum analysis in turning operation," Journal of Applied Sciences, vol. 8, no. 21, pp. 3879-3886, 2008.
    [20] C. Ai, Y. Sun, G. He, X. Ze, W. Li, and K. Mao, "The milling tool wear monitoring using the acoustic spectrum," The International Journal of Advanced Manufacturing Technology, vol. 61, no. 5-8, pp. 457-463, 2012.
    [21] F. Klocke, B. Döbbeler, T. Pullen, and T. Bergs, "Acoustic emission signal source separation for a flank wear estimation of drilling tools," Procedia CIRP, vol. 79, pp. 57-62, 2019.
    [22] M. Malekian, S. S. Park, and M. B. Jun, "Tool wear monitoring of micro-milling operations," Journal of Materials Processing Technology, vol. 209, no. 10, pp. 4903-4914, 2009.
    [23] P. Prickett and C. Johns, "An overview of approaches to end milling tool monitoring," International Journal of Machine Tools and Manufacture, vol. 39, no. 1, pp. 105-122, 1999.
    [24] C. Zhang and J. Zhang, "On-line tool wear measurement for ball-end milling cutter based on machine vision," Computers in industry, vol. 64, no. 6, pp. 708-719, 2013.
    [25] S. Ravikumar, K. Ramachandran, and V. Sugumaran, "Machine learning approach for automated visual inspection of machine components," Expert systems with applications, vol. 38, no. 4, pp. 3260-3266, 2011.
    [26] W. Wang, Y. Wong, and G. S. Hong, "Flank wear measurement by successive image analysis," Computers in Industry, vol. 56, no. 8-9, pp. 816-830, 2005.
    [27] J. Su, C. Huang, and Y. Tarng, "An automated flank wear measurement of microdrills using machine vision," Journal of Materials Processing Technology, vol. 180, no. 1-3, pp. 328-335, 2006.
    [28] K. N. Prasad and B. Ramamoorthy, "Tool wear evaluation by stereo vision and prediction by artificial neural network," Journal of Materials Processing Technology, vol. 112, no. 1, pp. 43-52, 2001.
    [29] S. Zhang, High-resolution, real-time 3-D shape measurement. State University of New York at Stony Brook, 2005.
    [30] S. Wei, S. Wang, C. Zhou, K. Liu, and X. Fan, "Binocular vision measurement using Dammann grating," Applied Optics, vol. 54, no. 11, pp. 3246-3251, 2015.
    [31] W. Wang, Y. Wong, and G. Hong, "3D measurement of crater wear by phase shifting method," Wear, vol. 261, no. 2, pp. 164-171, 2006.
    [32] M. T. García-Ordás, E. Alegre, V. González-Castro, and R. Alaiz-Rodríguez, "A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques," The International Journal of Advanced Manufacturing Technology, vol. 90, no. 5-8, pp. 1947-1961, 2017.
    [33] X. Wu, Y. Liu, X. Zhou, and A. Mou, "Automatic Identification of Tool Wear Based on Convolutional Neural Network in Face Milling Process," Sensors, vol. 19, no. 18, p. 3817, 2019.
    [34] D. M. D’Addona, A. S. Ullah, and D. Matarazzo, "Tool-wear prediction and pattern-recognition using artificial neural network and DNA-based computing," Journal of Intelligent Manufacturing, vol. 28, no. 6, pp. 1285-1301, 2017.
    [35] WRIGHT, Raymond E, "Logistic regression," 1995.
    [36] X. Yin, J. Goudriaan, E. A. Lantinga, J. Vos, and H. J. Spiertz, "A flexible sigmoid function of determinate growth," Annals of botany, vol. 91, no. 3, pp. 361-371, 2003.
    [37] S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE transactions on systems, man, and cybernetics, vol. 21, no. 3, pp. 660-674, 1991.
    [38] W. S. Noble, "What is a support vector machine?," Nature biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
    [39] T. G. Dietterich, "Ensemble methods in machine learning," in International workshop on multiple classifier systems, 2000.
    [40] L. Breiman, "Bagging predictors," Machine learning, vol. 24, no. 2, pp. 123-140, 1996.
    [41] M. Pal, "Random forest classifier for remote sensing classification," International journal of remote sensing, vol. 26, no. 1, pp. 217-222, 2005.
    [42] R. E. Schapire, "The boosting approach to machine learning: An overview," Nonlinear estimation and classification, pp. 149-171, 2003.
    [43] D. D. Margineantu and T. G. Dietterich, "Pruning adaptive boosting," in ICML, vol. 97: Citeseer, pp. 211-218, 1997.
    [44] S. Džeroski and B. Ženko, "Is combining classifiers with stacking better than selecting the best one?," Machine learning, vol. 54, no. 3, pp. 255-273, 2004.
    [45] 王鴻鈞, "應用三維機械視覺於端銑刀磨耗檢測系統," 碩士論文, 動力機械工程學系, 國立清華大學, 新竹市, 2018.
    [46] 莊于萱, "端銑刀磨耗定量檢測系統," 碩士論文, 動力機械工程學系, 國立清華大學, 新竹市, 2019.
    [47] 林于翔, "端銑刀磨耗樣態分類系統." 碩士論文, 動力機械工程學系, 國立清華大學, 新竹市, 2020.
    [48] Y. Jung, "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, vol. 30, no. 1, pp. 197-215, 2018.

    QR CODE