研究生: |
林津瑋 Chin-Wei Lin |
---|---|
論文名稱: |
雙亞硝基鐵錯合物之新衍生物:合成與反應性的探討 A New Member of A Class of Dinitrosyl Iron Complexes(DNICs):Synthesis, Reactivity |
指導教授: |
廖文峯
Wen-Feng Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 雙亞硝基鐵錯合物 、一氧化氮 、酵素活化中心 、晴水解酵素 |
外文關鍵詞: | DNICs, nitrile hydratase, nitric oxide, sulfinate |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了模擬NHase之後修飾作用,本研究中,首先利用[PPN] [(NO)Fe (S,S-C6H4)2](1)({Fe(NO)}6)與H2O2進行反應。結果指出,此反應與O2氧化之例子相當類似,皆可生成sulfinate產物—[PPN] [(NO)Fe(S,SO2-C6H4) (S,S-C6H4)](3)。然而,若改變此一鐵硝基化合物之電子環境為{Fe(NO)}7之[PPN]2 [(NO)Fe (S,S-C6H4)2](6A)時,則其與O2之反應係改採一denitrosylation之反應路徑;而此一反應差異,由此二化合物之結構比較中推測,係可能起因於後者之NO π反鍵結上的電子密度增加,進而提高其NO與氧氣的反應性。
然而,不同於上述之反應,若使用一同時具有氧化與硝基化潛力之NO+為反應試劑時,則不論是化合物1或化合物6A,皆無法氧化其硫配位基為sulfinate產物,相反地,卻是與之進行硝基化,而生成一具有雙鐵核之Dinitrosyl Iron Complexes(DNICs)—[PPN] [(NO)Fe(μ-S,S-C6H4)2Fe(NO)2](7)。而此一結果,不只對於生化上RS-NO與DNICs之轉換現象,作了一相當良好之模擬呈現;同時,亦引發此一似protein-bound DNICs之雙鐵核硝基化合物的相關研究。
而使用相同之方法,本研究亦成功地由化合物3與NO+之反應中,合成了另一雙鐵核之DNICs —[PPN] [(NO)Fe(μ-S,SO2-C6H4)(μ-S,S-C6H4)Fe(NO)2](8)。
同時,藉由相關之結構分析、光譜變化以及反應性探討,更進一步得以推論,此Fe(NO)2部位,係為一電子提供者,而它經由化合物7與化合物8較短之Fe(1)—Fe(2)距離、以及其近似平面之Fe(2)-(Sbridge)2-Fe(1)結構,進而使電子delocalization至Fe(1)S4N架構中,並形成一{Fe(NO)}7-{Fe(NO)2}9 coupling之電子結構。
而研究中,亦針對如此結構之化合物7,與硫粉、[Fe(S,S-CNMe2) 3]、[PPN] [(S,S-CNMe2)]等不同含硫物種,進行反應,以進而檢測其釋出NO之特性。實驗結果說明,隨著不同含硫物種之採用,則化合物7亦能以不同之形式釋出NO。而此一過程,或許即是生理上,DNICs釋出NO的ㄧ種可能調控機制。
In modeling the inactive form NHase, reactions of [PPN] [(NO)Fe(S,S-C6H4)2](1) ({Fe(NO)}6) and H2O2 or O2 give the sulfinate product, [PPN] [(NO)Fe(S,SO2-C6H4) (S,S-C6H4)](3). In contrast, [PPN]2 [(NO)Fe(S,S-C6H4)2](6A)({Fe(NO)}6) is denitrosylated when reacting with O2. On the basis of the X-ray crystal structure, the bent ∠Fe-N-O in complex 6A implies the increase of electron density on NO π antibonding orbital promoting the reactivity of O2 and NO∙. However, both 1 and 6A produce the same dinuclear dinitrosyl iron complex (DNICs) [PPN][(NO)Fe(μ-S,S-C6H4)2Fe(NO)2 ] (7) when reacting with NO+. It thus appears that the variations of electronic environment between the two complexes show no selectivity toward NO+. The nitrosylation reaction not only gives a good mimic pattern of transformation of RS-NO into DNICs but also opens up the study of the dinuclear DNICs. By the same synthetic method, [PPN] [(NO)Fe(μ-S,SO2-C6H4)
(μ-S,S-C6H4)Fe(NO)2](8), a new member of a class of dinuclear DNICs, is also synthesized. It is suggested from the X-ray crystal structure data, IR/UV spectroscopy, and related reactivities that the Fe(NO)2 serves as an electron donor. The electron-donation occurs from Fe(2) to Fe(1) via the shortening Fe(1)—Fe(2) distance assigned as an {Fe(NO)}7-{Fe(NO)2}9 electronic structure. Further studies of 7 by reacting with S8, [Fe(S,S-CNMe2) 3], and [PPN] [(S,S-CNMe2)] proved that the NO-releasing preference is modulated by different thiolate compounds/ligands.
1. Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898.
2. Stamler, J. S. Cell 1994, 78, 931.
3. Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869.
4. Wiegant, F. A. C.; Malyshev, I. Y.; Kleschyov, A. L.; Faassen, E. V.; Vanin, A. F. FEBS Letters 1999, 455, 179.
5.Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 155.
6. Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
7. Alencar, J. L.; Chalupsky, K.; Sarr, M.; Schini-Kerth, V.; Vanin, A. F.; Stoclet, J.-C.; Muller, B. Biochemical Pharmacology 2003, 2365.
8. Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochemical Pharmacology 2002, 485.
9. Vlasova, M. A.; Vanin, A. F.; Muller, B.; Smirin, B. V.; Malyshev, I. Y.; Manukhina, E. B. Bulletin of Experimental Biology and Medicine 2003, 136, 226.
10. Lee, S. C.; Holm, R. H. Chem. Rev. 2004, 104, 1135.
11. Foster, M. W.; Cowan, J. A. J. Am. Chem. Soc. 1999, 121, 4093.
12. Liaw, W.-F.; Chiang, C.-Y.; Lee, G..-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. Inorg. Chem. 2000, 39, 480.
13. Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473.
14. Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem., in press.
15. Becker, K.; Savvides, S. N.; Keese, M.; Schirmer, R. H.; Karplus, P. A. Nature Structural Biology 1998, 5, 267.
16. Claiborne, A.; Yeh, J. I.; Mallet, T. C.; Luba, J.; Crane, III, E. J.; Charrier, V.; Parsonage, D. Biochemicry, Vol. 38, No. 47, 1999
17. Mascharak, P. K. Coordination Chemistry Reviews 2002, 225, 201.
18. Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785.
19. Jackson, H. L.; Shoner, S. C.; Rittenberg, D.; Cowen, J. A.; Lovell, S.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 2001, 40, 1646.
20. Odaka, M.; Tsujimura, M.; Endo, I. RIKEN Review 2001, No. 41, 58.
21. Greene, S. N.; Chang, C. H.; Richards, N. G. J. Chem. Commun. 2002, 2386.
22. Noveron, J. C.; Olmsread , M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2001, 123, 3247.
23. Kovacs, J. A. Chem. Rev. 2004, 104, 825.
24. Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G. -S.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492.
25.本實驗室李建明學長係利用[PPN][S,NH2-C6H4]與[PPN][(NO)Fe(S,S-C6H4)2],於THF溶液中進行反應,經數小時之後,則可得一綠色沉澱,此沉澱即為化合物[PPN]2[(NO)Fe (S,S-C6H4)2]。
26. Lobysheva, I. I.; Stupakova, M. V.; Mikoyan, V. D.; Vasilieva, S. V.; Vanin, A. F. FEBS Letters 1999, 454,177.
27.Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31, 451.
28. Eisenberg, R.; Meyer, C. D. Acc. Chem. Res. 1975, 8, 26.
29. Pierpont, C. G.; Eisenberg, R. Inorg. Chem. 1973, 12, 199.
30. Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413.