研究生: |
趙芷君 Chao, Chih-Chun |
---|---|
論文名稱: |
金奈米顆粒誘導氮摻雜石墨烯量子點之內濾效應用於水體中得恩地檢測 Gold Nanoparticles-induced Inner Filter Effect of Nitrogen-doped Graphene Quantum Dots for Thiram Detection in Aqueous Solutions |
指導教授: |
董瑞安
Doong, Ruey-An |
口試委員: |
劉耕谷
Liu, Keng-Ku 林芳新 Lin, Fang-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 分析與環境科學研究所 Institute of Analytical and Environmental Sciences |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 得恩地 、石墨烯量子點 、金奈米顆粒 、內濾效應 、螢光 |
外文關鍵詞: | Thiram, Graphene quantum dots (GQDs), Gold nanoparticles (AuNPs), Inner filter effect (IFE), Fluorescence |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
農藥在全球農業中扮演著舉足輕重的地位,然而隨著農藥的使用量增加,也逐漸衍伸出許多環境問題,其中得恩地為廣效性農藥,也經常使用在工業用途及民生用品中,其對水生生物危害極大,故偵測環境中的得恩地汙染顯得更加迫切。近年來檢測農藥的方式多為液相層析儀或拉曼光譜儀,這些檢測方法依賴昂貴、檢測耗時的實驗室分析儀器,不符合民生需求。故本研究期望開發出兼具簡單、經濟、環保、快速檢測及高靈敏度與選擇性之方法,以檢測水中之得恩地汙染。本研究基於檸檬酸鹽穩定的金奈米顆粒(AuNPs)誘導氮摻雜石墨烯量子點(N-GQDs)螢光的內濾效應(Inner filter effect, IFE)開發一種簡易的得恩地感測系統。AuNPs可以有效地淬滅N-GQDs的螢光,而當得恩地存在時,由於得恩地與AuNPs的化學鍵生成,從而導致AuNPs聚集並使N-GQDs因內濾效應減少的螢光相應恢復。通過測量N-GQDs的螢光,評估得恩地的濃度。所開發之系統對得恩地的檢測範圍為300-1000 nM,最低偵測極限(LOD)為38.5 nM。此外,該方法對得恩地具有良好的選擇性,以及成功應用於湖水與河水中的得恩地測定,為檢測水樣中的得恩地汙染提供一個具有發展潛力的分析方法。
Pesticides play an important role in global agriculture. However, many environmental problems have emerged gradually with the increase in the use of pesticides. Thiram is a wide-ranging pesticide and is often used in industrial and domestic sectors. It is extremely harmful to aquatic organisms. Therefore, it is more urgent to detect thiram residues in the environment. In recent years, detection of pesticide residues mainly performed with high-performance liquid chromatography or surface enhanced Raman spectroscopy. These methods depend on expensive and time-consuming laboratory analytical instruments, which is not practical for domestic cases. Herein, we hope to develop a simple, economical, environmentally friendly, rapid detection, high sensitivity and selective method to detect the thiram pollution in the water. In this study, we demonstrated a feasible thiram indicating system based on the inner filter effect (IFE) of citrate-stabilized Gold nanoparticles (AuNPs) on the fluorescence of nitrogen-doped graphene quantum dots (N-GQDs). AuNPs can quench the fluorescence of N-GQDs significantly. The presence of thiram in the system resulted in the remarkable aggregation due to the formation of covalent bond with AuNPs. Consequently, the inner filter effect induced by AuNP is relieved, accompanying with the recovery of emission of N-GQDs. The concentration of thiram is evaluated by measuring the fluorescence of N-GQDs. The developed system shows the concentration range of 300-1000 nM for Thiram with a lowest detection limit (LOD) of 38.5 nM. In addition, this method has good selectivity for thiram, and it has been successfully applied to detect thiram in lake and river water. In conclusion, it provides an analytical method with development potential for detecting thiram pollution in aqueous solutions.
1. European Food Safety Authority (EFSA), Peer review of the pesticide risk assessment of the active substance thiram. EFSA Journal, 15 (2017) 4700.
2. S. E. Martins, G. Fillmann, A. Lillicrap, K. V. Thomas, Review: ecotoxicity of organic and organo-metallic antifouling co-biocides and implications for environmental hazard and risk assessments in aquatic ecosystems. Biofouling, 34 (2018) 34-52.
3. N. R. Naik, S. Naik, J. Naik, Thiram a fungicide induced toxicity on glycogen and blood glucose level of freshwater fish Cyprinus carpio (Hamilton), Int. J. Fish. Aquat. Stud., 5 (2017) 93-96.
4. C. Cereser, S. Boget, P. Parvaz, A. Revol, An evaluation of thiram toxicity on cultured human skin fibroblasts. Toxicology, 162 (2001) 89-101.
5. J. Xue, Z. Luo, P. Li, Y. Ding, Y. Cui, Q. Wu, A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci. Rep., 4 (2014) 5408-5415.
6. P. Jamdagni, J. S. Rana, P. Khatri, Antioxidant activity and antifungal fractional inhibitory concentration indices of zinc oxide nanoparticles in combination with carbendazim, mancozeb, and thiram. Micro & Nano Lett., 14 (2019) 1037-1040.
7. S. Kaneco, N. Li, K. K. Itoh, H. Katsumata, T. Suzuki, K. Ohta, Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: Kinetics and mineralization. Chem. Eng. J., 148 (2009) 50-56.
8. J. Zhu, Q. Chen, F. Y. H. Kutsanedzie, M. Yang, Q. Ouyang, H. Jiang, Highly sensitive and label-free determination of thiram residue using surface-enhanced Raman spectroscopy (SERS) coupled with paper-based microfluidics. Anal. Methods, 9 (2017) 6186-6193.
9. S. Sánchez-Cortés, C. Domingo, J. V. García-Ramos, J. A. Aznárez, Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films. Langmuir, 17 (2001) 1157-1162.
10. X. H. Pham, E. Hahm, K. H. Huynh, B. S. Son, H. M. Kim, D. H. Jeong, B. H. Jun, 4-Mercaptobenzoic acid labeled gold-silver-alloy-embedded silica nanoparticles as an internal standard containing nanostructures for sensitive quantitative thiram detection. Int. J. Mol. Sci., 20 (2019) 4841.
11. M. Pastorello, F. A. Sigoli, D. P. dos Santos, I. O. Mazali, On the use of Au@Ag core-shell nanorods for SERS detection of Thiram diluted solutions. Spectrochim. Acta A, 231 (2020) 118113.
12. J. R. Lakowicz, Principles of fluorescence spectroscopy. Springer, 3rd ed (2006) New York, USA.
13. S. Chen, Y. L. Yu, J. H. Wang, Inner filter effect-based fluorescent sensing systems: A review. Anal. Chim. Acta, 999 (2018) 13-26.
14. Q. Zhang, Y. Qu, M. Liu, X. Li, J. Zhou, X. Zhang, H. Zhou, A sensitive enzyme biosensor for catecholics detection via the inner filter effect on fluorescence of CdTe quantum dots. Sens. Actuators B Chem., 173 (2012) 477-482.
15. L. Shang, C. Qin, L. Jin, L. Wang, S. Dong, Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst, 134 (2009) 1477-1482.
16. J. Zhang, R. Zhou, D. Tang, X. Hou, P. Wu, Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC Trends Anal. Chem., 110 (2019) 183-190.
17. M. J. Molaei, Principles, mechanisms, and application of carbon quantum dots in sensors: a review. Anal. Methods, 12 (2020) 1266-1287.
18. H. Li, X. Yang, Bovine serum albumin-capped CdS quantum dots as an inner-filter effect sensor for rapid detection and quantification of protamine and heparin. Anal. Methods, 7 (2015) 8445-8452.
19. M. Zhang, X. Cao, H. Li, F. Guan, J. Guo, F. Shen, Y. Luo, C. Sun, L. Zhang, Sensitive fluorescent detection of melamine in raw milk based on the inner filter effect of Au nanoparticles on the fluorescence of CdTe quantum dots. Food Chem., 135 (2012) 1894-1900.
20. M. Li, T. Chen, J. J. Gooding, J. Liu, Review of carbon and graphene quantum dots for sensing. ACS Sens., 4 (2019) 1732-1748.
21. E. Haque, J. Kim, V. Malgras, K. R. Reddy, A. C. Ward, J. You, Y. Bando, M. S. A. Hossain, Y. Yamauchi, Recent advances in graphene quantum dots: synthesis, properties, and applications. Small Methods, 2 (2018) 1800050.
22. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon, 50 (2012) 4738-4743.
23. P. Tian, L. Tang, K. S. Teng, S. P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem., 10 (2018) 221-258.
24. B. K. Walther, C. Z. Dinu, D. M. Guldi, V. G. Sergeyev, S. E. Creager, J. P. Cooke, A. Guiseppi-Elie, Nanobiosensing with graphene and carbon quantum dots: Recent advances. Mater. Today, 39 (2020) 23-46.
25. R. Xie, Z. Wang, W. Zhou, Y. Liu, L. Fan, Y. Li, X. Li, Graphene quantum dots as smart probes for biosensing. Anal. Methods, 8 (2016) 4001-4016.
26. R. Tian, S. Zhong, J. Wu, W. Jiang, Y. Shen, T. Wang, Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Opt. Mater., 60 (2016)204-208.
27. D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater., 22 (2010) 734-738.
28. Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C. M. Li, One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J. Mater. Chem., 22 (2012) 8764.
29. S. Chen, J. Liu, M. Chen, X. Chen, J. Wang, Unusual emission transformation of graphene quantum dots induced by self-assembled aggregation. Chem. Commun., 48 (2012) 7637-7639.
30. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. Zhu, P. M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett., 12 (2012) 844-849.
31. Z. Fan, S. Li, F. Yuan, L. Fan, Fluorescent graphene quantum dots for biosensing and bioimaging. RSC Adv., 5 (2015) 19773-19789.
32. J. Wen, M. Li, J. Xiao, C. Liu, Z. Li, Y. Xie, P. Ning, H. Cao, Y. Zhang, Novel oxidative cutting graphene oxide to graphene quantum dots for electrochemical sensing application. Mater. Today Commun., 8 (2016) 127-133.
33. L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano, 6 (2012) 5102-5110.
34. A. Bayat, E. Saievar-Iranizad, Synthesis of green-photoluminescent single layer graphene quantum dots: Determination of HOMO and LUMO energy states. J. Lumin., 192 (2017) 180-183.
35. S. Benitez-Martinez, M. Valcarcel, Graphene quantum dots in analytical science. TrAC Trends Anal. Chem., 72 (2015) 93-113.
36. Y. Du, S. Guo, Chemically doped fluorescent carbon and graphene quantum dots for bioimaging, sensor, catalytic and photoelectronic applications. Nanoscale, 8 (2016) 2532-2543.
37. Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T. H. Zeng, Y. Sun, J. Zeng, Versatile graphene quantum dots with tunable nitrogen doping. Part. Part. Syst. Char., 31 (2014) 597-604.
38. Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett., 13 (2013) 2436-2441.
39. D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R. E. Haddad, H. Fan, Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Sci. Rep., 4 (2014) 1-11.
40. L. Lin, M. Rong, S. Lu, X. Song, Y. Zhong, J. Yan, Y. Wang, X. Chen, A facile synthesis of highly luminescent nitrogen-doped graphene quantum dots for the detection of 2,4,6-trinitrophenol in aqueous solution. Nanoscale, 7 (2015) 1872-1878.
41. S. Ge, J. He, C. Ma, J. Liu, F. Xi, X. Dong, One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta, 199 (2019) 581-589.
42. X. Hai, Q. Mao, W. Wang, X. Wang, X. Chen, J. Wang, An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging. J. Mater. Chem. B, 3 (2015) 9109-9114.
43. S. Bian, C. Shen, H. Hua, L. Zhou, H. Zhu, F. Xi, J. Liu, X. Dong, One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). RSC Adv., 6 (2016) 69977-69983.
44. A. Karimzadeh, M. Hasanzadeh, N. Shadjou, M. de la Guardia, Optical bio(sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges. TrAC Trends Anal. Chem., 108 (2018) 110-121.
45. S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem., 86 (2014) 10201-10207.
46. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J. J. Zhu, Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale, 5 (2013) 4015.
47. H. Sun, L. Wu, W. Wei, X. Qu, Recent advances in graphene quantum dots for sensing. Mater. Today, 16 (2013) 433-442.
48. S. K. Das, C. M. Luk, W. E. Martin, L. Tang, D. Y. Kim, S. P. Lau, C. I. Richards, Size and dopant dependent single particle fluorescence properties of graphene quantum dots. J. Phys. Chem. C, 119 (2015) 17988-17994.
49. D. Wang, L. Wang, X. Dong, Z. Shi, J. Jin, Chemically tailoring graphene oxides into fluorescent nanosheets for Fe3+ ion detection. Carbon, 50 (2012) 2147-2154.
50. Y. Dong, G. Li, N. Zhou, R. Wang, Y. Chi, G. Chen, Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal. Chem., 84 (2012) 8378-8382.
51. L. Fan, Y. Hu, X. Wang, L. Zhang, F. Li, D. Han, Z. Li, Q. Zhang, Z. Wang, L. Niu, Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta, 101 (2012) 192-197.
52. X. Chen, S. Chen, Q. Ma, Fluorescence detection of dopamine based on nitrogen-doped graphene quantum dots and visible paper-based test strips. Anal. Methods, 9 (2017) 2246-2251.
53. B. Zheng, Y. Chen, P. Li, Z. Wang, B. Cao, F. Qi, J. Liu, Z. Qiu, W. Zhang, Ultrafast ammonia-driven, microwave-assisted synthesis of nitrogen-doped graphene quantum dots and their optical properties. Nanophotonics, 6 (2017) 259-267.
54. L. Tang, R. Ji, X. Li, K. Teng, Energy-level structure of nitrogen-doped graphene quantum dots. J. Mater. Chem. C, 1 (2013) 4908-4915.
55. J. Wang, C. Lu, T. Chen, L. Hu, Y. Du, Y. Yao, M.C. Goh, Simply synthesized nitrogen-doped graphene quantum dot (NGQD)-modified electrode for the ultrasensitive photoelectrochemical detection of dopamine. Nanophotonics, 9 (2019) 3831-3839.
56. J. Ju, W. Chen, Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens. Bioelectron., 58 (2014) 219-225.
57. J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Facile preparation and upconversion luminescence of graphene quantum dots. Chem. Commun., 47 (2011) 2580-2582.
58. M. Shehab, S. Ebrahim, M. Soliman, Graphene quantum dots prepared from glucose as optical sensor for glucose. J. Lumin., 184 (2017) 110-116.
59. N. T. N. Anh, A. D. Chowdhury, R. A. Doong, Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sens. Actuators B Chem., 252 (2017) 1169-1178.
60. Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater., 23 (2011) 776-780.
61. H. Xu, S. Zhou, J. Liu, Y. Wei, Nanospace-confined preparation of uniform nitrogen-doped graphene quantum dots for highly selective fluorescence dual-function determination of Fe3+ and ascorbic acid. RSC Adv., 8 (2018) 5500-5508.
62. H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal., 2 (2012) 781-794.
63. T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater., 26 (2014) 3297-3303.
64. S. Sarkar, M. Sudolska, M. Dubecky, C. J. Reckmeier, A. L. Rogach, R. Zboril, M. Otyepka, Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C, 120 (2016) 1303-1308.
65. Y. Guo, L. Zhang, F. Cao, Y. Leng, Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Sci. Rep., 6 (2016) 35795.
66. Y. Liu, P. Wu, Graphene quantum dot hybrids as efficient metal-free electrocatalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces, 5 (2013) 3362-3369.
67. J. Ju, R. Z. Zhang, S. J. He, W. Chen, Nitrogen-doped graphene quantum dots-based fluorescent probe for the sensitive turn-on detection of glutathione and its cellular imaging. RSC Adv., 4 (2014) 52583-52589.
68. H. Qi, M. Teng, M. Liu, S. Liu, J. Li, H. Yu, C. Teng, Z. Huang, H. Liu, Q. Shao, A. Umar, T. Ding, Q. Gao, Z. Guo, Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J. Colloid Interface Sci., 539 (2019) 332-341.
69. H. Xu, S. Zhou, L. Xiao, H. Wang, S. Li, Q. Yuan, Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C, 3 (2015) 291-297.
70. Z. Lin, W. Xue, H. Chen, J. M. Lin, Classical oxidant induced chemiluminescence of fluorescent carbon dots. Chem. Commun., 48 (2012) 1051-1053.
71. S. N. Baker, G. A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed., 49 (2010) 6726-6744.
72. L. Li, L. Li, C. Wang, K. Liu, R. Zhu, H. Qiang, Y. Lin, Synthesis of nitrogen-doped and amino acid-functionalized graphene quantum dots from glycine, and their application to the fluorometric determination of ferric ion. Microchim. Acta, 182 (2015) 763-770.
73. K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, B. H. J. Natan, Preparation and characterization of Au colloid monolayers. Anal. Chem., 67 (1995) 735-743.
74. B. R. Khalkho, M. K. Deb, R. Kurrey, B. Sahu, A. Saha, T. K. Patle, R. Chauhan, K. Shrivas, Citrate functionalized gold nanoparticles assisted micro extraction of L-cysteine in milk and water samples using Fourier transform infrared spectroscopy. Spectrochim. Acta A, 267 (2022) 120523.
75. X. Wu, Y. Song, X. Yan, C. Zhu, Y. Ma, D. Du, Y. Lin, Carbon quantum dots as fluorescence resonance energy transfer sensors for organophosphate pesticides determination. Biosens. Bioelectron., 94 (2017) 292-297.
76. F. H. Lin, R. A. Doong, Characterization of interfacially electronic structures of gold–magnetite heterostructures using X-ray absorption spectroscopy. J. Colloid Interface Sci., 417 (2014) 325-332.
77. J. K. Patra, K. H. Baek, Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomedicine, 10 (2015) 7253-7264.
78. Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M. Li, C. Yi, M. Yang, A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron., 56 (2014) 39-45.
79. C. Chaicham, T. Tuntulani, V. Promarak, B. Tomapatanaget, Effective GQD/AuNPs nanosensors for selectively bifunctional detection of lysine and cysteine under different photophysical properties. Sens. Actuators B Chem., 282 (2019) 936-944.
80. N. T. N. Anh, R. A. Doong, One-step synthesis of size-tunable Gold@Sulfur-Doped graphene quantum dot nanocomposites for highly selective and sensitive detection of nanomolar 4-Nitrophenol in aqueous solutions with complex matrix. ACS Appl. Nano Mater., 1 (2018) 2153-2163.
81. F. Lin, C. Gui, W. Wen, T. Bao, X. Zhang, S. Wang, Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots. Talanta, 158 (2016) 292-298.
82. P. Mondal, J. L. Yarger, Colorimetric dual sensors of metal ions based on 1,2,3-triazole-4,5-dicarboxylic acid-functionalized gold nanoparticles. J. Phys. Chem. C, 123 (2019) 20459-20467.
83. M. B. Bhavya, R. Prabhu B, B. M. Shenoy, P. Bhol, S. Swain, M. Saxena, N. S. John, G. Hegde, A. K. Samal, Femtomolar detection of thiram via SERS using silver nanocubes as an efficient substrate. Environ. Sci.: Nano, 7 (2020) 3999-4009.
84. A. Pouladchang, H. Tavanai, M. Morshed, J. Khajehali, A. S. Shamsabadi, Controlled release of thiram pesticide from polycaprolactone micro and nanofibrous mat matrix. J. Appl. Polym. Sci., 139 (2022) 51641.
85. H. Ren, Z. Qian, M. Li, C. Peng, Z. Wang, X. Wei, Mesoporous silica-loaded gold nanocluster with enhanced fluorescence and ratiometric fluorescent detection of thiram in foods. Microchim. Acta, 188 (2021) 363.
86. S. Chu, H. Wang, X. Ling, S. Yu, L. Yang, C. Jiang, A portable smartphone platform using a ratiometric fluorescent paper strip for visual quantitative sensing. ACS Appl. Mater. Interfaces, 12 (2020) 12962-12971.
87. N. Atar, M. L. Yola, A novel QCM immunosensor development based on gold nanoparticles functionalized sulfur-doped graphene quantum dot and h-ZnS-CdS NC for Interleukin-6 detection. Anal. Chim. Acta, 1148 (2021) 338202.
88. A. Peruga, S. Grimalt, F. J. López, J. V. Sancho, F. Hernández, Optimisation and validation of a specific analytical method for the determination of thiram residues in fruits and vegetables by LC–MS/MS. Food Chem., 135 (2012) 186-192.
89. O. Bergendorff, C. Hansson, Spontaneous formation of thiuram disulfides in solutions of iron(III) dithiocarbamates. J. Agric. Food Chem., 50 (2002) 1092-1096.
90. B. Gupta, M. Rani, R. Kumar, Degradation of thiram in water, soil and plants: a study by high-performance liquid chromatography. Biomed. Chromatogr., 26 (2012) 69-75.
91. L. Ouyang, P. Dai, L. Yao, Q. Zhou, H. Tang, L. Zhu, A functional Au array SERS chip for the fast inspection of pesticides in conjunction with surface extraction and coordination transferring. Analyst, 144 (2019) 5528-5537.
92. P. J. Jimmy Huang, J. Yang, K. Chong, Q. Ma, M. Li, F. Zhang, W. J. Moon, G. Zhang, J. Liu, Good's buffers have various affinities to gold nanoparticles regulating fluorescent and colorimetric DNA sensing. Chem. Sci., 11 (2020) 6795-6804.
93. E. M. Maximiano, F. de Lima, C. A. L. Cardoso, G. J. Arruda, Modification of carbon paste electrodes with recrystallized zeolite for simultaneous quantification of thiram and carbendazim in food samples and an agricultural formulation. Electrochim. Acta, 259 (2018) 66-76.
94. M. Chen, W. Luo, Q. Liu, N. Hao, Y. Zhu, M. Liu, L. Wang, H. Yang, X. Chen, Simultaneous in situ extraction and fabrication of surface-enhanced Raman scattering substrate for reliable detection of thiram residue. Anal. Chem., 90 (2018) 13647-13654.
95. X. Zhao, D. Kong, R. Jin, H. Li, X. Yan, F. Liu, P. Sun, Y. Gao, G. Lu, On-site monitoring of thiram via aggregation-induced emission enhancement of gold nanoclusters based on electronic-eye platform. Sens. Actuators B Chem., 296 (2019) 126641.
96. P. N. Ragam, B. Mathew, Unmodified silver nanoparticles for dual detection of dithiocarbamate fungicide and rapid degradation of water pollutants. Int. J. Environ. Sci. Technol., 17 (2020) 1739-1752.
97. C. Zhang, X. Jiang, F. Yu, Y. Liu, Q. Yue, P. Yang, Y. Liu, Antagonistic action regulated anti-etching colorimetric detection of thiram residue in soil based on triangular silver nanoplates. Sens. Actuators B Chem., 344 (2021) 130304.
98. B. Zhang, Y. He, Z. Fan, Nitrogen-doped graphene quantum dots as highly sensitive and selective fluorescence sensor detection of iodide ions in milk powder. J. Photochem. Photobiol. A Chem., 367 (2018) 452-457.
99. M. Lu, L. Zhou, One-step sonochemical synthesis of versatile nitrogen-doped carbon quantum dots for sensitive detection of Fe2+ ions and temperature in vitro. Mater. Sci. Eng. C., 101 (2019) 352-359.
100. C. H. Chen, C. Cho, C. F. Wan, A. T. Wu, A colorimetric sensor for Fe2+ ion. Inorg. Chem. Commun., 41 (2014) 88-91.
101. P. Maiti, T. Singha, U. Chakraborty, S. D. Roy, P. Karmakar, B. Dey, S. A. Hussain, S. Paul, P. K. Paul, Selective and sensitive detection of L-Cysteine via fluorometric assay using gold nanoparticles and Rhodamine B in aqueous medium. Mater. Chem. Phys., 234 (2019) 158-167.
102. R. Cao, B. Li, A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem. Commun., 47 (2011) 2865-2867.
103. V. K. Sharma, J. S. Aulakh, A. K. Malik, Thiram: degradation, applications and analytical methods. J. Environ. Monit., 5 (2003) 717-723.