簡易檢索 / 詳目顯示

研究生: 程鈺琳
Cheng, Yu-Lin
論文名稱: 計算量子力學設計非等向晶面半導體應用於人工光合作用光陽極產氧設計
Computational Quantum Mechanics on Semiconductor Design with Anisotropic Facets for Oxygen Evolution at the Photoanode of Artificial Photosynthesis
指導教授: 洪哲文
Hong, Che-Wun
口試委員: 曾繁根
Tseng, Fan-Gang
李明蒼
Lee, Ming-Tsang
鄭欽獻
Cheng, Chin-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 密度泛函理論第一原理計算非等向晶面半導體鈦酸鍶產氧反應人工光合作用
外文關鍵詞: Density Functional Theory, First Principles Calculation, Anisotropic Facets Semiconductor, Strontium Titanate, Oxygen Evolution Reaction, Artificial Photosynthesis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究旨在以第一原理計算設計同質非等向晶面半導體,加上助催化劑,進行人工光合作用,並專注於光陽極的產氧分析。迄今為止,光催化反應的效率仍然很低,歸因於兩大原因,第一為電荷分離效率低,因為光激發產生的電子和電洞極容易重新再結合;第二是由於產氧反應的高過電勢障礙,產氧需要更高的能量才能克服動力學障礙,因此如何克服上述兩大挑戰對於可再生能源儲存和轉換系統設計至關重要。本文所選用之光觸媒鈦酸鍶(SrTiO3)具有良好的能帶特性,低成本,高抗光腐蝕和抗化學腐蝕的能力,一直是最廣泛的光催化分解水半導體之一,本研究提出設計簡單同質非等向性晶面半導體,再搭配光電催化活性相當優越助催化劑CoOOH,進一步提升光電產氧效率。
    本研究先將鈣鈦礦結構的SrTiO3立方晶體與菱面體CoOOH透過密度泛函理論(DFT)尋求最穩定結構,並進一步進行物理性質和光學性質計算,以取得能帶結構、電子態密度、反射率R 及吸收光譜α等光學性質,再利用上述的光學性質數值分析內建電場、導價帶特徵值。緊接著CoOOH晶體表面上執行產氧氧化半反應的模擬、並導入氧空缺的概念,達到降低過電勢與活化能的目標。
    根據第一原理計算,藉由異質界面建構分析SrTiO3能帶彎曲,內建電場的值為不同晶面平均位勢值之差值,模擬結果為2.913 eV,與運用功函數差值方式相較,誤差約為5.39%,證明藉由高內建電位,電子和電洞可有效地轉移到不同的非等向平面以完成光氧化和還原反應。由態密度(density of states)也顯示,在SrTiO3 (110)與(100)形成非等向晶面後,由於內建電場連帶能帶偏移,(110)之價帶和導帶會高於(100),表明(110)和(100)分別扮演p型和n型半導體角色。再從本論文四種析氧結果,顯示本論文提出建立氧空位提高電導率的方式,會造成結構相對不穩定,進而促進水分子在活性位點上的吸附,提升整個產氧催化效率。


    This thesis uses first principles calculation to design an anisotropic facets semiconductor as a photoanode to generate the oxygen evolution reaction (OER) in the artificial photosynthesis system. So far, the efficiency of photocatalytic reactions is still very low due to low charge separation efficiency and high overpotential barriers during the process of OER. Therefore, this research proposed a simple homogeneous anisotropic facets semiconductor Strontium Titanate (SrTiO3) coupled with a cocatalyst CoOOH to further improve the efficiency of photoelectrical plant for oxygen production
    In this study, the perovskite structure of SrTiO3 cubic crystals and rhombohedral CoOOH were used to find the most stable structure through density functional theory (DFT). After further calculation of physical and optical properties, the built-in electric field as well as valence band and conduction band were evaluated by using the above values of optical properties. Then, the simulation of oxidation half reaction was performed on the surface of the CoOOH crystal and the concept of oxygen vacancy was introduced to achieve the goal of reducing the activation overpotential.
    It was found that the formation of the facet junction is verified by a calculated work function difference between the (110) and (100) planes, which formed p-type and n-type segments of the junction, respectively. The built-in potential was estimated at about 2.9 V. As a result, with the ultra high built-in potential, electrons and holes can effectively transfer to different anisotropic planes to complete both photo-oxidative and photo-reductive reactions. The proposed oxygen vacancy technique has also been proved that establishing oxygen vacancies to increase conductivity promoted the adsorption of water molecules on active sites, reduced the activation overpotential and improved the overall efficiency of OER.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目標 7 第二章 研究理論 10 2.1光催化理論 10 2.1.1 光觸媒的催化原理 10 2.1.2 光觸媒分解水的機制 11 2.1.3 影響光催化反應的因素 14 2.1.3.1內建電場 14 2.1.3.2助催化劑 15 2.2 First Principles Computation 16 2.2.1 Schrödinger Equation 17 2.2.2 Pseudopotential 18 2.2.3 Hartree-Fock Equation 20 2.2.4 密度泛函的基本論述 22 2.2.5 Kohn-Sham Equation 24 2.2.6 Local Density Approximation (LDA) 26 2.2.7 Generalized Gradient Approximation (GGA) 27 2.2.8 Self-Consistent Field Method (SCF) 27 第三章 模型建構與模擬方法 29 3.1 模擬流程 29 3.2 Cambridge Serial Total Energy Package (CASTEP) 29 3.3 模型建構與參數設定 30 3.4 SrTiO3內建電場 31 3.4.1 SrTiO3功函數模擬計算與收斂性測試 32 3.4.2 Band Bending 36 3.5 CoOOH模型建構與參數設定 38 3.5.1CoOOH收斂性測試 39 第四章 結果與討論 41 4.1 SrTiO3結構最佳化與物理性質計算 41 4.2 內建電場分析 45 4.2.1 SrTiO3功函數模擬計算 45 4.2.2 Band bending 46 4.3 SrTiO3 (110)與(100)電子結構分析 51 4.4 CoOOH結構最佳化與基本性質計算 53 4.5 CoOOH之產氧計算結果 56 第五章 結論與未來研究方向 63 5.1 結論 63 5.2 未來工作計畫 65 第六章 參考文獻 66

    [1] 核能電廠-替代能源, Retrieved from https://sites.google.com/site/ henengdianchang103112108/ti-dai-neng-yuan
    [2] N. Armaroli, & V. Balzani, “The Future of Energy Supply: Challenges and Opportunities”, Angewandte Chemie, 46 (1–2): 52–66, 2007
    [3] E. El-Khouly, E. El-Mohsnawy, &S. Fukuzumi, "Solar energy conversion: From natural to artificial photosynthesis”, Journals & Books Journal of Photochemistry and Photobiology C, 31, 36-83, 2017
    [4] A. Fujishima, & K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (5358), 37-38, 1972
    [5] X. Chang, T. Wang, P. Zhang, J. Zhang, A. Li, & J. Gong, "Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes”, Journal of the American Chemical Society, 137 (26), 8356-8359, 2015
    [6] Q. Ye, & J. W. Xu, “Bulk Heterojunction Solar Cells — Opportunities and Challenges”, Solar Cells - New Approaches and Reviews,13, 2015
    [7] R. Chen, S. Pang, H. An, T. Dittrich, F. Fan & C. Li, “Giant Defect-Induced Effects on Nanoscale Charge Separation in Semiconductor Photocatalysts”, Nano Letters, 19 (1), 426-432, 2019
    [8] N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu, & H. M. Chen, “Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives”, Chemical Society Reviews, 46 (2), 337-365, 2017
    [9] X. Zhou, N. Liu, T. Yokosawa, & A. Osvet, “Intrinsically Activated SrTiO3: Photocatalytic H2 Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst”, ACS Applied Materials & Interfaces, 10 (35), 29532-29542, 2018
    [10] M. Wrighton, A. Ellis, & D. Ginley t, “Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential”, Journal of the American Chemical Society, 98 (10), 2774-2779, 1976
    [11] J. G. Mavroides, J. A. Kafalas, & D. F. Kolesar, “Photoelectrolysis of water in cells with SrTiO3 anodes”, Applied Physics Letters, 28, 241, 1976
    [12] B. L. Phoon, C. W. Lai, J. C. Juan, P. L. Show, & W. H. Chen, “A review of synthesis and morphology of SrTiO3 for energy and other applications”, International Journal of Energy Research, 43 (10), 2019
    [13] L. Mu, Y. Zhao, Ailong Li, S. Wang, Z. Wang, & C. Li, “Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting”, Energy & Environmental Science, 9 (7), 2463-2469, 2016
    [14] Free energy
    (https://www.khanacademy.org/science/biology/energy-and-enzymes/free-energy-tutorial/a/gibbs-free-energy)
    [15] J. Ran, J. Zhang, J. Yu, M. Jaroniec, & S. Z. Qiao, “Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting”, Chemical Society Reviews, 43 (22), 7787-7812, 2014
    [16] S. Xie, Q. Zhang, G. Liua, & Y. Wang, “Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures”, Chemical Communications, 52 (1), 35-59, 2015
    [17] P. Usubharatana, D. McMartin, A. Veawab, & P. Tontiwachwuthikul, “Photocatalytic process for CO2 emission reduction from industrial flue gas streams”, Industrial & Engineering Chemistry Research, 45 (8), 2558–2568, 2005
    [18] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices, (2nd ed.)”, England, Pearson Education, 2013
    [19] L. Wang, D. Mitoraj, S. Turner, O. V. Khavryuchenko, T. Jacob, R. K. Hocking, & R. Beranek, “Ultrasmall CoO(OH)x Nanoparticles As a Highly Efficient “True” Cocatalyst in Porous Photoanodes for Water Splitting”, ACS Catalysis, 7 (7), 4759-4767, 2017
    [20] P. Hohenberg, & W. Kohn, “Inhomogeneous Electron Gas”, Physical Review, 136 (3B), B864-871, 1964.
    [21] W. Kohn, & L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, 140 (4A), A1133-1138, 1965
    [22] K. A. Brueckner, “The Many Body Problem”, Physical Review, 97, 1353 ,1955
    [23] J. Goldstone, Proceedings of the Royal Society (London), A239, 267 ,1957
    [24] James M Goff, “Density Functional Theory and Practice Course”, Retrieved from https://sites.psu.edu/dftap/2019/03/31/transferability-of-cu-pseudopotentials-in-cucuo-systems/, 2019
    [25] D. R. Hamann, M. Schlüter, C. Chiang, “Norm-Conserving Pseudopotentials”, Physical Review Letters, 43 (20), 1494–1497 ,1979
    [26] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism”, Physical Review B, 41 (11), 7892–7895, 1990
    [27] D. R. Hartree, “The Wave Mechanics of an Atom with a Non-Coulomb Central Field”, Mathematical Proceedings of the Cambridge Philosophical Society, 24 (1), 111, 1928
    [28] V. A. Fock, “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”, Zeitschrift für Physik (in German). 61 (1), 126, 1930
    [29] J. C. Slater, “The Self Consistent Field and the Structure of Atoms”, Physical Review, 32 (3), 339–348, 1928
    [30] M. Born, J. R. Oppenheimer, “Zur Quantentheorie der Molekeln”, Annalen der Physik (in German), 389 (20), 457–484, 1927
    [31] R. G. Parr and W. Yang, “Density-Functional Theory of Atoms and Molecules”, Oxford University Press, Oxford, 1989
    [32] J. P. Perdew, K. Burke, & M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical Review Letters, 77 (18), 3865, 1996
    [33] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, 38, 3098, 1988
    [34] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, 37, 785, 1988
    [35] N. Woods, “On the Nature of Self-Consistency in Density Functional Theory”, Computer Science, Physics, 2018
    [36] Materials Studio version 2018 from https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
    [37] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, “Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients”, Reviews of Modern Physics, 64, 1045-1097, 1992
    [38] BIOVIA Materials Studio Adsorption Locator tutorials from https://www.researchgate.net/profile/Hamad_Jappor/post/how_to_attach_gas_molecules_on_graphene_monolayer_using_material_Studio/attachment/5c5ca230cfe4a781a57dd1aa/AS%3A723782922670081%401549574704299/download/Adsorption+Locator+tutorials.pdf
    [39] C. G. Van Walle, & R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system”, Physical Review B, 34 (8), 5621-5634, 1986
    [40] M. Zemzemi, & S. Alaya, “Band offset of the ZnO/Cu2O heterojunction from ab initio calculations”, Superlattices and Microstructures, 64, 311-318, 2013
    [41] C. E. Ekuma, M. Jarrell, J. Moreno, & D. Bagayoko, “First principle electronic, structural, elastic, and optical properties of strontium titanate”, AIP Advances, 2 (1), 012189, 2012
    [42] Y. Wang, C. Zhang, Y. Liu, M. Zhang & F. Min, “Efficient Visible-Light-Induced Photocatalytic Activity of SrTiO3 Co-Doped With Os and N: A GGA + U Investigation”, Physica Status Solidi B, 256 (7), 1800574, 2019
    [43] W. Zhao, G. Zhu, T. Lin, F. Xu, & F. Huang, “Black Strontium Titanate Nanocrystals of Enhanced Solar Absorption for Photocatalysis”, CrystEngComm, 17(39), 7528-7534, 2015
    [44] T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi & K. Domen, “Photocatalytic water splitting with a quantum efficiency of almost unity”, Nature, 581, 2020
    [45] R. G. Delaplane, J. A. Ibers, J. Ferraro, & J. Rush, “Diffraction and Spectroscopic Studies of the Cobaltic Acid System HCoC2–DCoO2”, The Journal of Chemical Physics, 50 (5), 1920-1927, 1969
    [46] Y. Chang, Z. Zhang, H. Liu, N. Wang, & J. Tang, “Cobalt oxyhydroxide nanoflake based fluorescence sensing platform for label-free detection of DNA”, The Analyst, 141 (15), 4719–4724, 2016
    [47] M. J. Craig, G. Coulter, E. Dolan, J. Soriano-López, E. Mates-Torres, W. Schmitt & M. García-Melchor, “Universal scaling relations for the rational design of molecular water oxidation catalysts with near-zero overpotential”, Nature Communications, 10 (1), 4993, 2019
    [48] I. C. Man, H. Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, “Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces”, ChemCatChem, 3 (7), 1159-1165, 2011
    [49] H. H. Pham, M.-J. Cheng, H. Frei, L.-W. Wang, “Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface”, ACS Catalysis, 6, 5610-5617, 2016

    QR CODE