簡易檢索 / 詳目顯示

研究生: 顏君玲
Yen, Chun-Ling
論文名稱: 利用PEDOT電極之液晶太赫茲空間光調制器之研究
Liquid-Crystal-Based Terahertz Spatial Light Modulator Using PEDOT as Electrodes
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 林怡欣
Lin, Yi-Hsin
施宙聰
Shy, Jow-Tsong
楊承山
Yang, Chan-Shan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 76
中文關鍵詞: 兆赫波液晶空間光調制器相位移中間層
外文關鍵詞: Terahertz, Liquid Crystal, Spatial Light Modulator, phase shift, intermediate layer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) 此種有機電極材料在兆赫(太赫茲)頻域下有很高的穿透率,穿透率可高達約90%。在本工作中,我們使用以簡單的旋塗(spin-coating)製程製作之PEDOT/PSS薄膜作為以液晶為基底的兆赫(太赫茲)光電元件之透明電極。
    我們設計了一種易於製作、低成本、符合經濟效益的空間光調制器(SLM),並在PEDOT/PSS上製作空間光調制器的像素圖案,空間光調制器的每一個像素均為扭曲向列型液晶盒。
    在本論文中,我們使用兆赫時域光譜技術(THz-TDS)進行量測分析,比較三種不同光學異向性(雙折射率)的液晶,分別為MDA-00-3461,TD101-146以及mixture-W1825所製作不同厚度的相位調制器的相位移程度,使用高雙折射率液晶mixture-W1825 (其在0.2到1.2THz頻寬間所量測出的ne~2.03,no ~1.65,△n~0.37),只需要250μm厚度即可達到在1.2THz的95.2o的相位移。
    此外,我們引入了一種聚合物薄膜置於厚的兆赫液晶盒中間,作為中間層的均勻配向層,以提升響應速度和達到更高的相位以及振幅調製。在本工作中,我們實驗發現一500μm厚的MDA-00-3461液晶相位調制器,相位移從94o增加到111°,此外振幅調制頻寬從0.2-0.6 THz擴展到0.2-0.9 THz,響應速度之上升時間由1.63秒縮短至1.06秒,下降時間由>100秒縮短至40秒。


    An organic electrode material, poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) exhibits as high as transmittance 90% in the range 0.2 - 1.2 THz. In this work, spin coated PEDOT/PSS thin films use as transparent electrodes for various liquid crystal (LCs) based Terahertz (THz) devices.
    We design a 3 × 3 pixels PEDOT/PSS pattern for spatial light modulator (SLM), which is simple device fabrication step and low cost for economic effective, each pixel of the SLM is a twisted nematic (TN) LC cell.
    In this thesis included, evaluation of optical anisotropy properties of three different kinds of LCs, such as MDA-00-3461, TD101-146 and mixture-W1825 using THz time-domain spectroscopy (THz-TDS). In addition, we investigated the phase shift phenomena of these three types of LCs cell at different thickness. We observed that mixture-W1825 LCs be excellent candidate for THz devices application (measured values of ne, no and △n are 2.03, 1.65 and 0.37, respectively at 0.2 - 1.2 THz). The highest phase shift achieved 95.2o at 1.2 THz with injected mixture-W1825 LCs into 250 μm thick cell only.
    Besides that, we introduced a polymeric thin film as an intermediate layer in between a thick THz LCs cells to improve the alignment properties for faster response and higher phase as well as amplitude modulation. The phase shift increased from 94o to 111o, amplitude modulation range increased from 0.2-0.6 THz to 0.2-0.9 THz with intermediate based LCs cell (injected LCs MDA-00-3461, 500μm thickness). Also, improve the response time properties of the bi-layers as compare single layer LCs cell. The rise time and fall time is shortened from 1.63 sec to 1.06 sec, and 100 sec to 40 sec, respectively.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Figure VII List of Table XIII Chapter 1 Introduction 1 1.1 Terahertz technology 1 1.1.1 Introduction to terahertz radiation 1 1.1.2 Terahertz time-domain spectroscopy 2 1.2 Liquid crystal 3 1.2.1 Nematic liquid crystal 4 1.2.2 Alignment of liquid crystal layers and twisted nematic (TN) liquid crystal cells 6 1.2.3 High birefringence liquid crystal 8 1.3 Terahertz liquid crystal device 9 1.4 PEDOT/PSS 9 1.4.1 Surface Patterning of PEDOT/PSS 10 1.5 Motivation and objectives 11 1.6 Organization of this thesis 12 Chapter 2 Spatial light modulator 13 2.1 Jones matrix 14 2.2 Single pixel detector 17 2.3 Compressed sensing 18 Chapter 3 Experimental Methods 24 3.1 Terahertz time-domain spectroscopy system 24 3.1.1 Ti: sapphire femtosecond laser system 24 3.1.2 Photoconductive antenna-based THz-TDS 24 3.1.3 Extraction of optical parameters of materials 27 3.1.3.1 Introduction of thick sample 28 3.1.3.2 Introduction of thin sample (thin-film approximation) 29 3.1.3.3 Extraction of complex refractive index 32 3.2 Theoretical phase shift of applied voltage on LC 35 3.3 Sample preparation 36 3.3.1 LC cell and reference cell 36 3.3.2 Substrate with PEDOT/PSS 37 3.3.3 LC-based THz spatial light modulator 38 3.3.4 Intermediate layer 39 Chapter 4 Experimental results and discussion 41 4.1 Transmittance of different conductive film 41 4.2 Optical properties of different liquid crystal 44 4.3 Liquid crystal THz phase shift abilities 48 4.3.1 THz phase shift abilities of different thickness as well as different kinds of liquid crystals 48 4.3.2 Comparison of theoretical threshold voltage and real threshold voltage 59 4.3.3 THz phase shift abilities with intermediate layer 62 4.4 PEDOT/PSS pattern 68 4.5 Simulation results of compressive sensing 69 Chapter 5 Conclusions and future works 72 5.1 Conclusions 72 5.2 Future works 73 Reference 74

    [1] Y. Shen, "Terahertz time-domain spectroscopy and imaging," J. Electr. Electron. Syst, vol. 3, no. 1, pp. 1000e113-1-1000e113-2, 2013.
    [2] D. Auston, K. Cheung, and P. Smith, "Picosecond photoconducting Hertzian dipoles," Applied physics letters, vol. 45, no. 3, pp. 284-286, 8/1984.
    [3] A. Rice et al., "Terahertz optical rectification from< 110> zinc‐blende crystals," Applied physics letters, vol. 64, no. 11, pp. 1324-1326, 3/1994.
    [4] X. C. Zhang, B. Hu, J. Darrow, and D. Auston, "Generation of femtosecond electromagnetic pulses from semiconductor surfaces," Applied Physics Letters, vol. 56, no. 11, pp. 1011-1013, 3/1990.
    [5] R. Köhler et al., "Terahertz semiconductor-heterostructure laser," Nature, vol. 417, no. 6885, pp. 156-159, 5/2002.
    [6] Q. Wu and X. C. Zhang, "Free‐space electro‐optic sampling of terahertz beams," Applied Physics Letters, vol. 67, no. 24, pp. 3523-3525, 12/1995.
    [7] D. Spence, J. Evans, W. Sleat, and W. Sibbett, "Regeneratively initiated self-mode-locked Ti: sapphire laser," Optics letters, vol. 16, no. 22, pp. 1762-1764, 11/1991.
    [8] C. A. Schmuttenmaer, "Exploring dynamics in the far-infrared with terahertz spectroscopy," Chemical reviews, vol. 104, no. 4, pp. 1759-1780, 9/2004.
    [9] C.-S. Yang et al., "Non-Drude behavior in indium-tin-oxide nanowhiskers and thin films investigated by transmission and reflection THz time-domain spectroscopy," IEEE Journal of Quantum Electronics, vol. 49, no. 8, pp. 677-690, 8/2013.
    [10] J. Van Rudd, J. L. Johnson, and D. M. Mittleman, "Cross-polarized angular emission patterns from lens-coupled terahertz antennas," JOSA B, vol. 18, no. 10, pp. 1524-1533, 10/2001.
    [11] Y.-S. Lee, Principles of terahertz science and technology. Springer Science & Business Media, 2009.
    [12] 黃元品, "向列型液晶摻雜黏土礦石之電光響應及其光折變效應之研究," 國立清華大學化學工程學系, 2005.
    [13] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics. Wiley New York, 2007.
    [14] 陳文政, "摻雜奈米粒子及偶氮染料的液晶薄膜之光配向研究及應用", 國立中山大學光電工程學系, 2009.
    [15] C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, "Liquid-crystal-based terahertz tunable Lyot filter," Applied Physics Letters, vol. 88, no. 10, pp. 101107-1-101107-3, 3/2006.
    [16] H.-T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, vol. 444, no. 7119, pp. 597-600, 11/2006.
    [17] X.-w. Lin et al., "Self-polarizing terahertz liquid crystal phase shifter," Aip Advances, vol. 1, no. 3, pp. 032133-1-032133-6, 8/2011.
    [18] B. Scherger, C. Jördens, and M. Koch, "Variable-focus terahertz lens," Optics express, vol. 19, no. 5, pp. 4528-4535, 2/2011.
    [19] S.-T. Wu, U. Efron, and L. D. Hess, "Birefringence measurements of liquid crystals," Applied optics, vol. 23, no. 21, pp. 3911-3915, 11/1984.
    [20] F. Yang and J. Sambles, "Microwave liquid crystal wavelength selector," Applied Physics Letters, vol. 79, no. 22, pp. 3717-3719, 11/2001.
    [21] L. Wang et al., "Large birefringence liquid crystal material in terahertz range," Optical Materials Express, vol. 2, no. 10, pp. 1314-1319, 10/2012.
    [22] K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, and I. Dierking, "Polymer stabilized liquid crystal phase shifter for terahertz waves," Optics express, vol. 21, no. 10, pp. 12395-12400, 5/2013.
    [23] C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, "Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter," Optics express, vol. 12, no. 12, pp. 2625-2630, 6/2004.
    [24] C.-F. Hsieh, R.-P. Pan, T.-T. Tang, H.-L. Chen, and C.-L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate," Optics letters, vol. 31, no. 8, pp. 1112-1114, 4/2006.
    [25] H.-Y. Wu, C.-F. Hsieh, T.-T. Tang, R.-P. Pan, and C.-L. Pan, "Electrically tunable room-temperature 2/spl pi/liquid crystal terahertz phase shifter," IEEE Photonics Technology Letters, vol. 18, no. 14, pp. 1488-1490, 7/2006.
    [26] Y. Wu et al., "Graphene/liquid crystal based terahertz phase shifters," Optics express, vol. 21, no. 18, pp. 21395-21402, 9/2013.
    [27] C.-S. Yang, T.-T. Tang, P.-H. Chen, R.-P. Pan, P. Yu, and C.-L. Pan, "Voltage-controlled liquid-crystal terahertz phase shifter with indium–tin–oxide nanowhiskers as transparent electrodes," Optics letters, vol. 39, no. 8, pp. 2511-2513, 4/2014.
    [28] R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, "Liquid crystal based electrically switchable Bragg structure for THz waves," Optics express, vol. 17, no. 9, pp. 7377-7382, 4/2009.
    [29] C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, "Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating," Optics express, vol. 16, no. 5, pp. 2995-3001, 3/2008.
    [30] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature photonics, vol. 3, no. 3, pp. 148-151, 3/2009.
    [31] C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, "Polarizing terahertz waves with nematic liquid crystals," Optics letters, vol. 33, no. 11, pp. 1174-1176, 6/2008.
    [32] Y. Du, H. Tian, X. Cui, H. Wang, and Z.-X. Zhou, "Electrically tunable liquid crystal terahertz phase shifter driven by transparent polymer electrodes," Journal of Materials Chemistry C, vol. 4, no. 19, pp. 4138-4142, 4/2016.
    [33] Wikipedia contributors. (4 July 2018 13:56 UTC). Pedot:Pss. Available: https://en.wikipedia.org/w/index.php?title=PEDOT:PSS&oldid=830580048
    [34] C. G. Granqvist, "Transparent conductors as solar energy materials: A panoramic review," Solar energy materials and solar cells, vol. 91, no. 17, pp. 1529-1598, 7/2007.
    [35] J. George and C. Menon, "Electrical and optical properties of electron beam evaporated ITO thin films," Surface and Coatings Technology, vol. 132, no. 1, pp. 45-48, 5/2000.
    [36] C.-W. Chen, Y.-C. Lin, C.-H. Chang, P. Yu, J.-M. Shieh, and C.-L. Pan, "Frequency-dependent complex conductivities and dielectric responses of indium tin oxide thin films from the visible to the far-infrared," IEEE Journal of Quantum Electronics, vol. 46, no. 12, pp. 1746-1754, 12/2010.
    [37] E. Dadrasnia, F. Garet, D. Lee, J.-L. Coutaz, S. Baik, and H. Lamela, "Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements," Applied Physics Letters, vol. 105, no. 1, pp. 011101-1-011101-5, 7/2014.
    [38] D. Micheli, R. Pastore, G. Gradoni, and M. Marchetti, "Tunable nanostructured composite with built-in metallic wire-grid electrode," AIP Advances, vol. 3, no. 11, pp. 112132-1-112132-7, 11/2013.
    [39] S. Ouyang et al., "Surface patterning of PEDOT: PSS by photolithography for organic electronic devices," Journal of Nanomaterials, vol. 2015, p. 4, 2015.
    [40] D. Shrekenhamer, C. M. Watts, and W. J. Padilla, "Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator," Optics express, vol. 21, no. 10, pp. 12507-12518, 5/2013.
    [41] A. Degiron, J. J. Mock, and D. R. Smith, "Modulating and tuning the response of metamaterials at the unit cell level," Optics express, vol. 15, no. 3, pp. 1115-1127, 2/2007.
    [42] N. Kakenov et al., "Graphene-enabled electrically controlled terahertz spatial light modulators," Optics letters, vol. 40, no. 9, pp. 1984-1987, 5/2015.
    [43] T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Applied physics letters, vol. 84, no. 18, pp. 3555-3557, 5/2004.
    [44] J. F. Federici et al., "THz imaging and sensing for security applications—explosives, weapons and drugs," Semiconductor Science and Technology, vol. 20, no. 7, pp. S266-S280, 6/2005.
    [45] Z. Jiang and X.-C. Zhang, "Terahertz imaging via electrooptic effect," IEEE Transactions on microwave theory and techniques, vol. 47, no. 12, pp. 2644-2650, 12/1999.
    [46] A. W. Lee, Q. Qin, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "Real-time terahertz imaging over a standoff distance (> 25 meters)," Applied Physics Letters, vol. 89, no. 14, pp. 141125-1-141125-3, 10/2006.
    [47] D. Zimdars, "High speed terahertz reflection imaging," Advanced Biomedical and Clinical Diagnostic Systems III, vol. 5692, pp. 255-260, 4/2005: International Society for Optics and Photonics.
    [48] S. Rout and S. R. Sonkusale, "A low-voltage high-speed terahertz spatial light modulator using active metamaterial," APL Photonics, vol. 1, no. 8, pp. 086102-1-086102-8, 8/2016.
    [49] B. B. Hu and M. C. Nuss, "Imaging with terahertz waves," Optics letters, vol. 20, no. 16, pp. 1716-1718, 8/1995.
    [50] M. C. Nuss, "Chemistry is right for T-ray imaging," IEEE Circuits and Devices Magazine, vol. 12, no. 2, pp. 25-30, 3/1996.
    [51] W. L. Chan, K. Charan, D. Takhar, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Applied Physics Letters, vol. 93, no. 12, pp. 121105-1-121105-3, 9/2008.
    [52] M. Fornasier and H. Rauhut, "Compressive sensing," in Handbook of mathematical methods in imaging: Springer, 2011, pp. 187-228.
    [53] S. Rout, "Active metamaterials for terahertz communication and imaging," Tufts University, 2016.
    [54] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE signal processing magazine, vol. 25, no. 2, pp. 21-30, 3/2008.
    [55] S. Foucart and H. Rauhut, "An Invitation to Compressive Sensing," A Mathematical Introduction to Compressive Sensing: Springer, pp. 1-39, 5/2013
    [56] G. Kutyniok, "Theory and applications of compressed sensing," GAMM‐Mitteilungen, vol. 36, no. 1, pp. 79-101, 8/2013.
    [57] S. J. Wright, "Coordinate descent algorithms," Mathematical Programming, vol. 151, no. 1, pp. 3-34, 6/2015.
    [58] Y.-H. Lin and H.-S. Chen, "Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications," Optics Express, vol. 21, no. 8, pp. 9428-9436, 4/2013.
    [59] C.-S. Yang, T.-T. Tang, R.-P. Pan, P. Yu, and C.-L. Pan, "Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment," Applied Physics Letters, vol. 104, no. 14, pp. 141106-1-141106-5, 4/2014.
    [60] H. Sun, Q. Zhou, C. Li, L. Kong, Y. Zhao, and C. Zhang, "The birefringence of two liquid crystals in terahertz band," Infrared, Millimeter-Wave, and Terahertz Technologies IV, vol. 10030, pp. 100302D-1-100302D-6, 12/2016: International Society for Optics and Photonics.
    [61] H. Wang, "Studies of liquid crystal response time", University of Central Florida, 2005.
    [62] E. Nowinowski-Kruszelnicki et al., "High birefringence liquid crystal mixtures for electro-optical devices," Optica Applicata, vol. 42, no. 1, pp. 167-180, 2012.
    [63] C.-S. Yang, "氧化銦錫奈米材料在兆赫波段光電特性之量測及其應用," 國立清華大學物理學系, pp. 1-145, 2014.

    QR CODE