研究生: |
黃龍華 Wijaya, Aditya Utama |
---|---|
論文名稱: |
基於項目的協同過濾推薦系統應用於短期項目之設計與評估 Designing and Evaluating Item-based Collaborative Filtering Recommendation Schemes for Short-period Items |
指導教授: |
雷松亞
Ray, Soumya |
口試委員: |
徐茉莉
Shmueli, Galit 林福仁 Lin, Fu-Ren |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 國際專業管理碩士班 International Master of Business Administration(IMBA) |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 推薦系統 、以項目為基礎之協同過濾 、貼圖 、相似度測量 、個人化推薦 、非個人化推薦 、時間區間 、喜好 |
外文關鍵詞: | recommendation system, item-based collaborative filtering, stickers, similarity measurement, personalized recommendations, non-personalized recommendations, time range, preference |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
N/A
In the last 20 years, recommendation system has been becoming more and more widely used in many web and mobile applications. It was started when Amazon popularized a recommendation technique called item-based collaborative filtering. This technique is fast, stable, and it performs well in most media sharing contexts. However, we found that there are some serious differences in recommending “stickers”, compared to traditional media items, like movies, songs, and so on. We have tried several approaches to improve recommendations in this context by comparing different similarity measurement methods, comparing personalized and non-personalized recommendations, and altering the time range used for generating the recommendation lists. We found that, in the situation where preference measurement does not have upper-bound, adjusted cosine similarity and cosine similarity methods perform better than Pearson correlation method. Meanwhile, in the situation where items have short-lived popularity period, straightforward personalized recommendations give bad accuracy. Finally, the personalized recommendations show performance improvement when generated using shorter time range.
1. Cardinalblue.com. (2017). Cardinal Blue Software. [online] Available at: https://cardinalblue.com/ [Accessed 6 Apr. 2017].
2. Crunchbase.com. (2017). Cardinal Blue Software | crunchbase. [online] Available at: https://www.crunchbase.com/organization/cardinal-blue-software#/entity [Accessed 6 Apr. 2017].
3. Davis, J. and Goadrich, M., 2006, June. The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning (pp. 233-240). ACM.
4. Ekstrand, M.D., Riedl, J.T. and Konstan, J.A., 2011. Collaborative filtering recommender systems. Foundations and Trends® in Human–Computer Interaction, 4(2), pp.81-173.
5. Fortune.com. (2017). Amazon’s recommendation secret. [online] Available at: http://fortune.com/2012/07/30/amazons-recommendation-secret/ [Accessed 20 Jun. 2017].
6. Gunawardana, A. and Shani, G., 2009. A survey of accuracy evaluation metrics of recommendation tasks. Journal of Machine Learning Research, 10(Dec), pp.2935-2962.
7. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009.
8. Hadley Wickham (2015). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.0.0. https://CRAN.R-project.org/package=stringr
9. Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40(1), 1-29. URL http://www.jstatsoft.org/v40/i01/.
10. Hadley Wickham and Romain Francois (2016). dplyr: A Grammar of Data Manipulation. R package version 0.5.0. https://CRAN.R-project.org/package=dplyr
11. Herlocker, J., Konstan, J.A. and Riedl, J., 2002. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4), pp.287-310.
12. Insights. (2017). The Beatles’ First 100 Days on Spotify. [online] Available at: https://insights.spotify.com/us/2016/04/08/the-beatles-first-100-days/ [Accessed 25 Jun. 2017].
13. Linden, G., Smith, B. and York, J., 2003. Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet computing, 7(1), pp.76-80.
14. Matt Dowle and Arun Srinivasan (2016). data.table: Extension of `data.frame`. R package version 1.10.0. https://CRAN.R-project.org/package=data.table
15. Mejia, C.R.O., 2016. Starting Up the Big Data Engine: Sparking Data Analytic Thinking Through Data Extraction and Exploration in Startups.
16. Michael Cysouw (2015). qlcMatrix: Utility Sparse Matrix Functions for Quantitative Language Comparison. R package version 0.9.5. https://CRAN.R-project.org/package=qlcMatrix
17. Michael Hahsler (2016). recommenderlab: Lab for Developing and Testing Recommender Algorithms. R package version 0.2-1. https://CRAN.R-project.org/package=recommenderlab
18. Sarwar, B., Karypis, G., Konstan, J. and Riedl, J., 2001, April. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285-295). ACM.
19. Shmueli, G. and Lichtendahl, K. (n.d.). Practical time series forecasting with R.
20. Shmueli, G., Bruce, P. and Patel, N. (2016). Data Mining for Business Analytics: Concepts, Techniques, and Applications. John Wiley & Sons.
21. Slate Magazine. (2017). The Best Movies and TV Shows Coming This Month to Netflix, Hulu, HBO Now, and Amazon Prime. [online] Available at: http://www.slate.com/blogs/browbeat/2016/01/05/new_streaming_january_2016_netflix_amazon_hulu_and_hbo_now_s_best_new_movies.html [Accessed 25 Jun. 2017].
22. Washingtonpost.com. (2017). Washingtonpost.com: Amazon Gets Personal With E-Commerce. [online] Available at: http://www.washingtonpost.com/wp-srv/washtech/daily/nov98/amazon110898.htm [Accessed 20 Jun. 2017].
23. Yao, G. and Cai, L., User-Based and Item-Based Collaborative Filtering Recommendation Algorithms Design.