簡易檢索 / 詳目顯示

研究生: 黃忠越
Huynh, Trung Viet
論文名稱: 利用鉺摻雜之石墨烯量子點作為光學多模式生物探針應用於環境與生醫感測器
Erbium-Doped Graphene Quantum Dots based Multimodal Optical Bio-Probes for Environmental and Biomedical Sensing Aplication
指導教授: 董瑞安
DOONG, RUEY-AN
口試委員: 黃志清
HUANG, ZHI-QING
黃郁棻
HUANG, YU-FEN
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 80
中文關鍵詞: 鐵離子石墨烯量子點鑭系元素
外文關鍵詞: Ferric ion, Graphene quantum do, lanthanide
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此首次通過水熱法成功製備了石墨烯量子點(Er-GQDs),用於增強人血清中Fe3+的檢測。 GQDs僅在乳糖存在下製備。然後將Er3 +離子以1:50的比例添加到GQDs溶液中。 TEM圖像清楚地表明,Er-GQDs的納米顆粒尺寸在1.9 – 5 nm範圍內。 XRD和XPS清楚地表明Er3 +已成功整合到GQDs晶格中。有趣的是,摻Er3+的GQDs在360 – 730 nm的波長下均具有上轉換和下轉換的光學特性。 730 nm的上轉換和360 nm的下轉換均可產生440 nm的激發波長,這可以靈敏地選擇性檢測Fe3 +。在這項研究中,證據清楚地顯示了飲用水和人血清中Fe3+的出色靈敏度,LD50 1mg mL-1的MTT結果證明了這一點,線性範圍從40 nM – 8 µM,LOD 11.2 nM和1.2 µM – 10觀察到LOD為336 nM的µM。此外,當在波長360 nm下轉換時,觀察到Er-GQDs的良好分析性能。結果清楚地表明,Er-GQDs具有出色的光學性能,這可以為摻雜鑭系元素的GQDs打開通往各種應用的大門。
    關鍵詞:鐵離子;石墨烯量子點;鑭系元素;熒光;選擇性。


    Herein, erbium-doped graphene quantum dots (Er-GQDs) have been successfully fabricated for the first time with a hydrothermal method for the enhanced detection of Fe3+ in human serum. GQDs were simply prepared in the presence of lactose. Er3+ ions were then added to the GQDs solution at a ratio of 1:50. The TEM image clearly showed that the nanoparticles size of Er-GQDs was in the range of 1.9 – 5 nm. XRD and XPS clearly indicated the successful incorporation of Er3+ into GQD lattice. Interestingly, the Er3+-doped GQDs exhibit both up-conversion and down-conversion optical properties in the wavelength of 360 – 730 nm. Both the up-conversion at 730 nm and down-conversion at 360 nm can produce the excitation wavelength of 440 nm, which can be sensitive and selective detection of Fe3+. In this study, the evidences clearly show the outstanding sensitivity of Fe3+ in the drinking water and human serum proved with MTT results at LD50 1mg mL-1, a good linear range from 40 nM – 8 µM with LOD 11.2 nM and 1.2 µM – 10 µM with LOD 336 nM were observed. In addition, good analytical performance of Er-GQDs was observed when the down-conversion at wavelength 360 nm. Results clearly indicated the excellent optical properties of Er-GQDs, which can open a gateway to various applications using lanthanide-doped GQDs.
    Keywords: ferric ions, graphene quantum dots (GQDs), lanthanide, fluorescence, selectivity.

    摘要 1 ABSTRACT 2 ACKNOWLEDGMENT 3 LIST OF TABLES 12 LIST OF SCHEME 13 NOMENCLATURE 14 CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND AND THEORY. 4 2.1. Heavy mental in environment and human body 4 2.1.1. Heavy metal pollution in water. 4 2.1.3. Heavy metal ion detection 9 2.2 Graphene quantum dots 12 2.2.1. Structure property 12 1.3.2.1 Top-down methods 13 1.3.2.2 Bottom up methods 14 2.2.3. Doped graphene quantum dots 15 2.3. Rare earth elements 18 2.3.1. Magnetic 19 2.3.2. Up-conversion properties of lanthanide elements 20 2.3.2.1. Excited state absorption 21 2.3.2.2. Energy transfer upconversion 22 2.3.2.3. Photon Avalanche (PA) 22 2.3.2.4. Upconversion Mechanism Based on Triplet-Triplet Annihilation (TTA) 23 2.3.3. Application of up-conversion 24 2.3.3.1. Upconversion nanophosphors for biomedical applications 24 2.3.2.2. Drug delivery 25 2.3.2.3. Upconversion nanophosphors for photocatalysis applications 25 2.3. Sensing technology for nanomaterial application. 26 2.3.1. Fluorescence sensors 26 2.3.1.1. Downconversion 26 2.3.1.2. Up conversion 29 2.3.2. Sensing in Bio-images 30 2.4. Anti-counterfeiting ink. 32 CHAPTER 3 MATERIALS AND METHODS 34 3.1. Reagents and materials 34 3.2. Experimental flow chart 34 3.3. GQD fluorometric procedures 35 3.3.1. Optical property measurement 35 3.3.2. Mental ion detection by Er-GQDs 35 3.3.2.1 Detection in drinking water 35 3.3.2.2. Detection in human serum 36 3.3.3. Sensitive and selective of Er-GQDs 36 3.3.4. Anti-counterfeiting ink. 37 3.3.5. Bio-image detection. 37 3.4. Cytotoxicity (MTT) 37 3.5 Characterization 38 3.5.1. Transmission electron microscopy (TEM) 38 3.5.2. Atomic force microscope (AFM) 38 3.5.3. X-ray photoelectron spectroscopy (XPS) 38 3.5.4 X-ray Diffraction (XRD) 39 3.5.5. Fourier transform infrared spectrometry (FTIR) 39 3.5.6. Uv/vis spectroscopy 39 3.5.7. Fluorescence spectroscopy 39 3.5.8. Dynamic light scattering (DLS) 40 CHAPTER 4 RESULTS AND DISCUSSION 41 4.1. Optical Sensing Property 41 4.1.1The characterization of erbium doped graphene quantum dots for Fe3+ sensors. 41 4.1.1.1. Er-GQDs optimization 41 4.1.1.2. TEM, HRTEM and AFM result. 42 4.1.1.3. XPS, XRD, Raman, FTIR and Liftime result. 44 4.1.2. Optical properties of Er-GQDs 47 4.1.2.1. UV-vis absorption, FL property. 48 4.1.2.2. Quantum yield following the lifetime 50 4.1.2.3. pH effect on the detection of Fe3+ using Er-GQDs 51 4.1.2.4. Analytical performance of Er-GQDs on Fe3+ detection 52 4.1.2.5. Detection of Fe3+ in human serum using Er-GQDs 57 4.1.2.6. Selectivity of Er-GQDs toward Fe3+ detection. 59 4.1.2.8. Bio-imagine probe. 63 4.2. Anti-counterfeiting ink 65 CHAPTER 5 CONCLUSION 67 REFERENCE 68

    1. Ngoc Anh NT, Chang P-Y, Doong R-A (2019) Sulfur-doped graphene quantum dot-based paper sensor for highly sensitive and selective detection of 4-nitrophenol in contaminated water and wastewater. RSC Advances 9 (46):26588-26597. doi:10.1039/c9ra04414k
    2. Ganganboina AB, Doong RA (2019) Graphene Quantum Dots Decorated Gold-Polyaniline Nanowire for Impedimetric Detection of Carcinoembryonic Antigen. Sci Rep 9 (1):7214. doi:10.1038/s41598-019-43740-3
    3. Narasimhan AK, Santra TS, Rao MR, Krishnamurthi GJRa (2017) Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. 7 (85):53822-53829
    4. Anas NAA, Fen YW, Omar NAS, Daniyal W, Ramdzan NSM, Saleviter S (2019) Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors (Basel) 19 (18). doi:10.3390/s19183850
    5. Anh NTN, Chowdhury AD, Doong R-a (2017) Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater. Sensors and Actuators B: Chemical 252:1169-1178. doi:10.1016/j.snb.2017.07.177
    6. Ganganboina AB, Doong RA (2018) Functionalized N-doped graphene quantum dots for electrochemical determination of cholesterol through host-guest inclusion. Mikrochim Acta 185 (11):526. doi:10.1007/s00604-018-3063-4
    7. Jia F, Li G, Yang B, Yu B, Shen Y, Cong H (2019) Investigation of rare earth upconversion fluorescent nanoparticles in biomedical field. Nanotechnology Reviews 8 (1):1-17
    8. Zhou J, Liu Q, Feng W, Sun Y, Li F (2015) Upconversion luminescent materials: advances and applications. Chem Rev 115 (1):395-465. doi:10.1021/cr400478f
    9. Wang F, Bae K, Huang Z, Xue J (2018) Two-photon graphene quantum dot modified Gd 2 O 3 nanocomposites as a dual-mode MRI contrast agent and cell labelling agent. J Nanoscale 10 (12):5642-5649

    10. Wu JX, Yan B (2017) Eu(III)-functionalized In-MOF (In(OH)bpydc) as fluorescent probe for highly selectively sensing organic small molecules and anions especially for CHCl3 and MnO4(). J Colloid Interface Sci 504:197-205. doi:10.1016/j.jcis.2017.05.054
    11. Hong D, Deng X, Liang J, Li J, Tao Y, Tan K (2019) One-step hydrothermal synthesis of down/up-conversion luminescence F-doped carbon quantum dots for label-free detection of Fe3+. Microchemical Journal 151. doi:10.1016/j.microc.2019.104217
    12. Costa BA, Nunes WDG, Bembo LH, Siqueira AB, Caires F, Leles MIG, Ionashiro EY (2018) Study of thermoanalytical behavior of heavier lanthanides terephthalates in air atmosphere. Journal of Thermal Analysis and Calorimetry 134 (2):1205-1210
    13. Kawabata H (2018) The mechanisms of systemic iron homeostasis and etiology, diagnosis, and treatment of hereditary hemochromatosis. Int J Hematol 107 (1):31-43. doi:10.1007/s12185-017-2365-3
    14. Torti SV, Manz DH, Paul BT, Blanchette-Farra N, Torti FM (2018) Iron and Cancer. Annu Rev Nutr 38:97-125. doi:10.1146/annurev-nutr-082117-051732
    15. Tan SC, Chin SF, Pang SCea (2017) Disposable Carbon Dots Modified Screen Printed Carbon Electrode Electrochemical Sensor Strip for Selective Detection of Ferric Ions. Journal of Sensors 2017:1-7. doi:10.1155/2017/7576345
    16. Lawrence KP, Douki T, Sarkany RPE, Acker S, Herzog B, Young AR (2018) The UV/Visible Radiation Boundary Region (385-405 nm) Damages Skin Cells and Induces "dark" Cyclobutane Pyrimidine Dimers in Human Skin in vivo. Sci Rep 8 (1):12722. doi:10.1038/s41598-018-30738-6
    17. Kim K, Nam YS, Lee Y, Lee KB (2017) Highly Sensitive Colorimetric Assay for Determining Fe(3+) Based on Gold Nanoparticles Conjugated with Glycol Chitosan. J Anal Methods Chem 2017:3648564. doi:10.1155/2017/3648564
    18. Dutta Chowdhury A, Doong RA (2016) Highly Sensitive and Selective Detection of Nanomolar Ferric Ions Using Dopamine Functionalized Graphene Quantum Dots. ACS Appl Mater Interfaces 8 (32):21002-21010. doi:10.1021/acsami.6b06266
    19. Yadav KK, Gupta N, Kumar V, Singh JK (2017) Bioremediation of heavy metals from contaminated sites using potential species: a review. 37 (1):65
    20. Wongsasuluk P, Chotpantarat S, Siriwong W, Robson M (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ Geochem Health 36 (1):169-182. doi:10.1007/s10653-013-9537-8
    21. Jamshaid M, AAK, Kashif Ahmed1,Monawwar Saleem (2018) Heavy metal in drinking water its effect on human health and its treatment techniques – a review. International Journal of Biosciences (IJB) 12 (4):223-240. doi:10.12692/ijb/12.4.223-240
    22. Choi SH, Kim JY, Mi Choi E, Lee MY, Yang JY, Ho Lee G, Su Kim K, Yang J-S, Russo RE, Yoo JHJAL (2019) Heavy metal determination by inductively coupled plasma–mass spectrometry (ICP-MS) and direct mercury analysis (DMA) and arsenic mapping by femtosecond (fs)–laser ablation (LA) ICP-MS in cereals. 52 (3):496-510
    23. Akram S, Najam R, Rizwani GH, Abbas SAJPjops (2015) Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin. 28 (5)
    24. Abd El-Samad M, Hanafi HJJoTUfS (2017) Analysis of toxic heavy metals in cigarettes by Instrumental Neutron Activation Analysis. 11 (5):822-829
    25. Kyung C-M (2015) Smart sensors for health and environment monitoring. Springer,
    26. Kodom K, Preko K, Boamah DJS, Journal SCAI (2012) X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. 21 (8):1006-1021
    27. Li S, Zhang C, Wang S, Liu Q, Feng H, Ma X, Guo JJA (2018) Electrochemical microfluidics techniques for heavy metal ion detection. 143 (18):4230-4246
    28. Cui L, Wu J, Ju HJB, Bioelectronics (2015) Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. 63:276-286
    29. Bansod B, Kumar T, Thakur R, Rana S, Singh IJB, Bioelectronics (2017) A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. 94:443-455
    30. Sugunan A, Thanachayanont C, Dutta J, Hilborn J (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. 6 (3-4):335
    31. Zhu X, Zhang Z, Xue Z, Huang C, Shan Y, Liu C, Qin X, Yang W, Chen X, Wang TJAc (2017) Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: the K sp of a metal hydroxide-assisted mechanism. 89 (22):12054-12058
    32. Zhang Y-L, Wang L, Zhang H-C, Liu Y, Wang H-Y, Kang Z-H, Lee S-TJRa (2013) Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe 3+ ions. 3 (11):3733-3738
    33. Lin W, Long L, Yuan L, Cao Z, Feng JJAca (2009) A novel ratiometric fluorescent Fe3+ sensor based on a phenanthroimidazole chromophore. 634 (2):262-266
    34. Chen C-H, Wang X-S, Li L, Huang Y-B, Cao RJDT (2018) Highly selective sensing of Fe 3+ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. 47 (10):3452-3458
    35. Yuxi Xu KS, Chun Li, and Gaoquan Shi (2010) Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process.pdf>. ACS Nano 4 (7). doi:10.1021/nn101187z
    36. Tian P, Tang L, Teng KS, Lau SP (2018) Graphene quantum dots from chemistry to applications. Materials Today Chemistry 10:221-258. doi:10.1016/j.mtchem.2018.09.007
    37. Tran HL, Doong R-a (2019) Sustainable fabrication of green luminescent sulfur-doped graphene quantum dots for rapid visual detection of hemoglobin. Analytical Methods 11 (35):4421-4430. doi:10.1039/c9ay01138b
    38. Tao S, Zhu S, Feng T, Xia C, Song Y, Yang B (2017) The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: A review. Materials Today Chemistry 6:13-25. doi:10.1016/j.mtchem.2017.09.001
    39. Liu R, Wu D, Feng X, Mullen K (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133 (39):15221-15223. doi:10.1021/ja204953k
    40. Sciortino A, Cannizzo A, Messina F (2018) Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. C 4 (4). doi:10.3390/c4040067
    41. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50 (12):4738-4743. doi:10.1016/j.carbon.2012.06.002
    42. Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9 (3):324-343. doi:10.1016/j.nantod.2014.04.010
    43. Zuo W, Tang L, Xiang J, Ji R, Luo L, Rogée L, Ping Lau S (2017) Functionalization of graphene quantum dots by fluorine: Preparation, properties, application, and their mechanisms. Applied Physics Letters 110 (22). doi:10.1063/1.4984238
    44. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219-225. doi:10.1016/j.bios.2014.02.061
    45. Ge S, He J, Ma C, Liu J, Xi F, Dong X (2019) One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta 199:581-589. doi:10.1016/j.talanta.2019.02.098
    46. Yeh TF, Teng CY, Chen SJ, Teng H (2014) Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv Mater 26 (20):3297-3303. doi:10.1002/adma.201305299
    47. Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V (2018) Lanthanide Doped Near Infrared Active Upconversion Nanophosphors: Fundamental Concepts, Synthesis Strategies, and Technological Applications. Small 14 (37):e1801304. doi:10.1002/smll.201801304
    48. Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln(3+))-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44 (6):1416-1448. doi:10.1039/c4cs00155a
    49. Babu BH, Lv C, Yu C, Bi P, Wen Z, Yang X, Li F, Hao X-T (2018) Erbium (III) tris(8-hydroxyquinoline) doped zinc oxide interfacial layer for improved performance of polymer solar cells. Organic Electronics 62:65-71. doi:10.1016/j.orgel.2018.07.013
    50. Börjesson K, Dzebo D, Albinsson B, Moth-Poulsen K (2013) Photon upconversion facilitated molecular solar energy storage. Journal of Materials Chemistry A 1 (30). doi:10.1039/c3ta12002c
    51. Bala M, Kumar S, Devi R, Khatkar A, Taxak VB, Boora P, Khatkar SP (2018) Synthesis, Photoluminescence Behavior of Green Light Emitting Tb(III) Complexes and Mechanistic Investigation of Energy Transfer Process. J Fluoresc 28 (3):775-784. doi:10.1007/s10895-018-2239-y
    52. Chen LC, Lloyd WR, 3rd, Chang CW, Sud D, Mycek MA (2013) Fluorescence lifetime imaging microscopy for quantitative biological imaging. Methods Cell Biol 114:457-488. doi:10.1016/B978-0-12-407761-4.00020-8
    53. Chen J, Zhao JX (2012) Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors (Basel) 12 (3):2414-2435. doi:10.3390/s120302414
    54. Gray V, Moth-Poulsen K, Albinsson B, Abrahamsson M (2018) Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coordination Chemistry Reviews 362:54-71. doi:10.1016/j.ccr.2018.02.011
    55. Shao H, Xu D, Ding Y, Hong X, Liu Y (2018) An "off-on" colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine. Mikrochim Acta 185 (4):211. doi:10.1007/s00604-018-2740-7
    56. Bischof H, Burgstaller S, Waldeck-Weiermair M, Rauter T, Schinagl M, Ramadani-Muja J, Graier WF, Malli R (2019) Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 8 (5). doi:10.3390/cells8050492
    57. Deng R, Xie X, Vendrell M, Chang YT, Liu X (2011) Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133 (50):20168-20171. doi:10.1021/ja2100774
    58. Zhang Z, Lin P-C (2018) Noble metal nanoparticles: synthesis, and biomedical implementations. In: Emerging Applications of Nanoparticles and Architecture Nanostructures. pp 177-233. doi:10.1016/b978-0-323-51254-1.00007-5
    59. Liu Q, Feng W, Yang T, Yi T, Li F (2013) Upconversion luminescence imaging of cells and small animals. Nat Protoc 8 (10):2033-2044. doi:10.1038/nprot.2013.114
    60. Farka Z, Mickert MJ, Hlavacek A, Skladal P, Gorris HH (2017) Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal Chem 89 (21):11825-11830. doi:10.1021/acs.analchem.7b03542
    61. Chen Z, Wu X, Hu S, Hu P, Yan H, Tang Z, Liu Y (2017) Upconversion fluorescent and X-ray-sensitive bifunctional nanoprobes for assessing the penetrability of inorganic nanoparticles in the digestive system. Medchemcomm 8 (5):1053-1062. doi:10.1039/c6md00703a
    62. Tan H, Gong G, Xie S, Song Y, Zhang C, Li N, Zhang D, Xu L, Xu J, Zheng J (2019) Upconversion Nanoparticles@Carbon Dots@Meso-SiO2 Sandwiched Core-Shell Nanohybrids with Tunable Dual-Mode Luminescence for 3D Anti-Counterfeiting Barcodes. Langmuir 35 (35):11503-11511. doi:10.1021/acs.langmuir.9b01919
    63. Wang M, Li M, Yang M, Zhang X, Yu A, Zhu Y, Qiu P, Mao C (2015) NIR-induced highly sensitive detection of latent finger-marks by NaYF4:Yb,Er upconversion nanoparticles in a dry powder state. Nano Res 8 (6):1800-1810. doi:10.1007/s12274-014-0686-6
    64. Xue H, Zhao J, Tang J, Gong H, He P, Zhou H, Yamauchi Y, He J (2016) High-Loading Nano-SnO2 Encapsulated in situ in Three-Dimensional Rigid Porous Carbon for Superior Lithium-Ion Batteries. Chemistry 22 (14):4915-4923. doi:10.1002/chem.201504420
    65. Bourdo SE, Al Faouri R, Sleezer R, Nima ZA, Lafont A, Chhetri BP, Benamara M, Martin B, Salamo GJ, Biris AS (2017) Physicochemical characteristics of pristine and functionalized graphene. J Appl Toxicol 37 (11):1288-1296. doi:10.1002/jat.3493
    66. Mao Y, Zhao C, Ge S, Luo T, Chen J, Liu J, Xi F, Liu J (2019) Gram-scale synthesis of nitrogen doped graphene quantum dots for sensitive detection of mercury ions and l-cysteine. RSC Advances 9 (57):32977-32983. doi:10.1039/c9ra06113d
    67. Shen HH, Peng SM, Long XG, Zhou XS, Yang L, Zu XT (2012) The effect of substrate temperature on the oxidation behavior of erbium thick films. Vacuum 86 (8):1097-1101. doi:10.1016/j.vacuum.2011.10.009
    68. Lin L, Song X, Chen Y, Rong M, Wang Y, Zhao L, Zhao T, Chen X (2015) Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine. Anal Chim Acta 891:261-268. doi:10.1016/j.aca.2015.08.011
    69. Uwamino Y, Ishizuka T, Yamatera H (1984) X-ray photoelectron spectroscopy of rare-earth compounds. J Journal of Electron Spectroscopy Related Phenomena 34 (1):67-78
    70. Outka DA, Stohr J, Jark W, Stevens P, Solomon J, Madix RJ (1987) Orientation and bond length of molecular oxygen on Ag(110) and Pt(111): A near-edge x-ray-absorption fine-structure study. Phys Rev B Condens Matter 35 (8):4119-4122. doi:10.1103/physrevb.35.4119
    71. Wandelt K, Brundle C (1985) The interaction of oxygen with gadolinium: UPS and XPS studies. J Surface Science 157 (1):162-182
    72. Swami GTK, Stageberg FE, Goldman AM (1984) XPS characterization of erbium sesquioxide and erbium hydroxide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2 (2):767-770. doi:10.1116/1.572568
    73. Marik S, Labrugere C, Toulemonde O, Moran E, Alario-Franco MA (2015) Core-level photoemission spectra of Mo0.3Cu0.7Sr2ErCu2Oy, a superconducting perovskite derivative. Unconventional structure-property relationships. Dalton Trans 44 (23):10795-10805. doi:10.1039/c5dt00459d
    74. Abualnaja KM, Šiller L, Horrocks BR (2015) Photoluminescence study of erbium-mixed alkylated silicon nanocrystals. J Int J Chem Mol Nucl Mater Metall Eng 9:234-244
    75. Azad F, Maqsood A (2014) Fabrication, structural characterization, dielectric and electrical parameters of the synthesized nano-crystalline erbium oxide. Electronic Materials Letters 10 (3):557-563. doi:10.1007/s13391-013-3195-y
    76. Sienkiewicz-Gromiuk J, Rusinek I, Kurach Ł, Rzączyńska Z (2016) Thermal and spectroscopic (IR, XPS) properties of lanthanide(III) benzene-1,3,5-triacetate complexes. Journal of Thermal Analysis and Calorimetry 126 (1):327-342. doi:10.1007/s10973-016-5521-8
    77. Hou W, Cronin SB (2013) A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials 23 (13):1612-1619. doi:10.1002/adfm.201202148
    78. Liu Y, Kim DY (2015) Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing. Chem Commun (Camb) 51 (20):4176-4179. doi:10.1039/c4cc07618d
    79. Vilian ATE, Giribabu K, Choe SR, Muruganantham R, Lee H, Roh C, Huh YS, Han Y-K (2017) A spick-and-span approach to the immobilization of horseradish peroxidase on Au nanospheres incorporated with a methionine/graphene biomatrix for the determination of endocrine disruptor bisphenol A. Sensors and Actuators B: Chemical 251:804-812. doi:10.1016/j.snb.2017.05.122
    80. Wax TJ, Zhao J (2019) Optical features of hybrid molecular/biological-quantum dot systems governed by energy transfer processes. Journal of Materials Chemistry C 7 (22):6512-6526. doi:10.1039/c9tc00232d
    81. Singh A, Singh S, Mishra H, Prakash R, Rai SJTJoPCB (2010) Structural, Thermal, and Fluorescence Properties of Eu (DBM) 3Phen x Complex Doped in PMMA. J The Journal of Physical Chemistry B 114 (41):13042-13051
    82. Singh AK, Singh SK, Prakash R, Rai SB (2010) Structural and optical properties of Sm(DBM)3Phen doped in poly(methyl methacrylate) (PMMA): An evidence for cascading energy transfer process. Chemical Physics Letters 485 (4-6):309-314. doi:10.1016/j.cplett.2009.12.057
    83. Escribano P, Julián-López B, Planelles-Aragó J, Cordoncillo E, Viana B, Sanchez C (2008) Photonic and nanobiophotonic properties of luminescent lanthanide-doped hybrid organic–inorganic materials. J Mater Chem 18 (1):23-40. doi:10.1039/b710800a
    84. Luo Y, Yan Q, Wu S, Wu W, Zhang Q (2007) Inter- and intra-molecular energy transfer during sensitization of Eu(DBM)3Phen luminescence by Tb(DBM)3Phen in PMMA. Journal of Photochemistry and Photobiology A: Chemistry 191 (2-3):91-96. doi:10.1016/j.jphotochem.2007.04.008
    85. Rauch MP, Knowles RR (2018) Applications and Prospects for Triplet-Triplet Annihilation Photon Upconversion. Chimia (Aarau) 72 (7):501-507. doi:10.2533/chimia.2018.501
    86. Singh-Rachford TN, Castellano FN (2010) Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews 254 (21-22):2560-2573. doi:10.1016/j.ccr.2010.01.003
    87. Wen S, Zhou J, Zheng K, Bednarkiewicz A, Liu X, Jin D (2018) Advances in highly doped upconversion nanoparticles. Nat Commun 9 (1):2415. doi:10.1038/s41467-018-04813-5
    88. Abdelhamid HN, Bermejo-Gomez A, Martin-Matute B, Zou X (2017) A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Mikrochim Acta 184 (9):3363-3371. doi:10.1007/s00604-017-2306-0
    89. Ganesan JS, Sepperumal M, Balasubramaniem A, Ayyanar S (2020) A novel pyrazole bearing imidazole frame as ratiometric fluorescent chemosensor for Al(3+)/Fe(3+) ions and its application in HeLa cell imaging. Spectrochim Acta A Mol Biomol Spectrosc 230:117993. doi:10.1016/j.saa.2019.117993
    90. Chen X, Sun W, Bai Y, Zhang F, Zhao J, Ding X (2018) Novel rhodamine Schiff base type naked-eye fluorescent probe for sensing Fe(3+) and the application in cell. Spectrochim Acta A Mol Biomol Spectrosc 191:566-572. doi:10.1016/j.saa.2017.10.029
    91. Zhang Z, Deng C, Zou Y, Chen L (2018) A novel fluorescent and colorimetric probe for cascade selective detection of Fe(III) and pyrophosphate based on a click generated cyclic steroid–rhodamine conjugate. Journal of Photochemistry and Photobiology A: Chemistry 356:7-17. doi:10.1016/j.jphotochem.2017.12.023
    92. Ji J, Chereddy SS, Ren Y, Chen X, Su D, Zhong Z, Mori T, Inoue Y, Wu W, Yang C (2018) A BODIPY-based near infrared fluorescent probe for Fe3+ in water. Journal of Photochemistry and Photobiology A: Chemistry 355:78-83. doi:10.1016/j.jphotochem.2017.10.043
    93. Sun X, He J, Yang S, Zheng M, Wang Y, Ma S, Zheng H (2017) Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J Photochem Photobiol B 175:219-225. doi:10.1016/j.jphotobiol.2017.08.035
    94. Xu H, Zhou S, Xiao L, Yuan Q, Gan W (2016) Time-efficient syntheses of nitrogen and sulfur co-doped graphene quantum dots with tunable luminescence and their sensing applications. RSC Advances 6 (43):36554-36560. doi:10.1039/c6ra05175h
    95. Wang W, Wang Z, Liu J, Peng Y, Yu X, Wang W, Zhang Z, Sun L (2018) One-Pot Facile Synthesis of Graphene Quantum Dots from Rice Husks for Fe3+ Sensing. Industrial & Engineering Chemistry Research 57 (28):9144-9150. doi:10.1021/acs.iecr.8b00913
    96. Guo R, Zhou S, Li Y, Li X, Fan L, Voelcker NH (2015) Rhodamine-Functionalized Graphene Quantum Dots for Detection of Fe(3+) in Cancer Stem Cells. ACS Appl Mater Interfaces 7 (43):23958-23966. doi:10.1021/acsami.5b06523
    97. Zhang H, Chen Y, Liang M, Xu L, Qi S, Chen H, Chen X (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86 (19):9846-9852. doi:10.1021/ac502446m
    98. Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S (2016) Nitrogen and Phosphorus Co-Doped Carbon Nanodots as a Novel Fluorescent Probe for Highly Sensitive Detection of Fe(3+) in Human Serum and Living Cells. ACS Appl Mater Interfaces 8 (17):10717-10725. doi:10.1021/acsami.6b01325

    QR CODE