簡易檢索 / 詳目顯示

研究生: 曾新華
論文名稱: 研發線上衍生氣相層析儀結合液相化學游離質譜術與電子鼻技術在環境與尿液樣品之分析
Development and Applications of On-line Derivatization Gas Chromatography with Liquid Chemical Ionization Mass Spectrometry and Electronic Nose for Analysis of Environmental and Urine Samples
指導教授: 凌永健
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 143
中文關鍵詞: 線上衍生液相化學游離
外文關鍵詞: GC-MS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣相層析質譜儀(GC-MS)是一部廣泛用來檢測揮發性與半揮發性有機化合物的儀器,但是對於一些熱不穩定及高極性化合物通常需經過衍生化步驟,而傳統的衍生法步驟通常是耗時費力,因此近年來開發簡單快速的線上(On-line)衍生技術友吸引各研究者的興趣。在本研究論文中即是利用了Phenyltrimethylammonium iodide (PTMA-I)、Tetramethylammonium hydroxide (TMA-OH)與Acetic anhydride衍生試劑,搭配直接樣品導入裝置,利用氣相層析儀注射埠熱源,分別針對氫氧基(-OH)、羧酸基(-COOH)與胺基(-NH2)開發線上衍生技術,並實際應用於檢測不同水環境中含有氫氧關能基的環境賀爾蒙及尿液中安非他命類濫用藥物的濃度。
    化學游離質譜法(CIMS)相對於電子撞擊法(EIMS)是較為軟性的游離方式,它可輔助作為化合物分子量的測定及探討化合物構造式的解析,在本研究中則是開發利用一些溶劑的蒸氣作為游離試劑,此方法亦可稱為液相化學游離法,實驗的結果證實呋喃(Furan)對於醯胺(Carboxylamide)官能基化合物有特佳之選擇性及靈敏度,若再搭配串聯質譜技術,可有效減少複雜樣品基質干擾,有效降低偵測極限。
    此外,電子鼻技術是一門講求科技整合發展的科技,在本研究論文中亦將其開發應用於快速鑑定漏油污染源,並以 GC-MS輔以確認電子鼻之快速分析,使得此測量結果更具準確性。


    Gas chromatography-mass spectrometry (GC-MS) is a widely used method for the analysis of volatile and thermally stable organic compounds in which, derivatization of analyte as the determinative step is employed to improve chromatographic characteristics by decreasing its polarity, increase volatility, and detection sensitivity. The traditional derivatization procedures are tedious, time consuming, laborious, and often result in evaporative losses of analytes of interest. Thus, alternative approaches involving minimum sample preparation and on-line derivatization have attracted researchers. In this study, phenyltrimethylammonium iodide (PTMA-I) ion-pair reagent has been used for online derivatization of compounds with polar functional groups like acids, phenols, and carboxyamides. Tetramethylammonium hydroxide (TMA-OH) ion-pair reagent was employed for on-line derivatization of hydroxyl groups containing endocrine disruptors (EDs) including nonylphenol (NP), bisphenol A (BPA), diethylstilbestrol (DES), and 17-beta-estradiol (Estradiol) during the determination of endocrine disrupters in surface water.
    Chemical ionization mass spectrometry (CI MS) is a softer ionization technique than electron ionization mass spectrometry (EI MS) which enables concentration of the total ion current among structurally relevant compounds providing information of ion indicative of the molecular weight and structure. Thus, use of many unusual chemical ionization reagents for selective detection and quantification of compounds in complex matrices have been attempted in the past. In this work, the ion-molecule reactions of nine monosubstituted naphthalene compounds were studied using tetrahydrofuran and furan as CI reagent in chemical ionization mass spectrometry (CI MS). Proton affinity factors, substituent effects, and the preferred site of adduct ion attachment were also examined. Collision activated dissociation experiments were used to characterize the variety of adducts formed under CI condition, and provided insight into product ion structures, and mechanisms of dissociation and condensation during CI MS/MS. Moreover, a simple, rapid, and sensitive method for the simultaneous determination of amphetamines in trace amounts of urine sample has been developed. The method uses GC direct sample introduction (DSI) device for on-line derivatization of amphetamines. Further use of laboratory-built multiple CI reagent system to introduce furan as CI reagent with tandem mass spectrometry improves the sensitivity and selectivity. The method uses only 20 □L of urine sample and spares pretreatments like extraction or cleanup. Sharp analyte peaks with relatively low background from impurities was noted. The limits of detection (LODs) for each amphetamine range from 0.4 to 1.0 ng mL-1. The linearity was examined using stock standard solutions between 1.0 and 500 ng mL-1 and all analytes show good linearity with correlation coefficients of r2 > 0.999. A good recovery (86 to 112 %) was obtained using five spiked samples. The RSDs range from 5.4 to 18.1 %, indicating good repeatability.
    The recently developed electronic nose (EN) for odor detection has been reported as a simple and rapid technique. It finds enormous applications in the food industry, bacterial metabolism, odor identification, and environmental monitoring. In this study, two electronic noses (EN), different in operational principle, were used for identifying the source of spilled oil in an accident. Use of traditional GC-MS not only confirm the identified spilled oil source but also provides detailed diagnostic information such as total petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and their C1-C4 alkylated homologues, as well as the n-alkanes, which are essential for follow-up remedial and regulatory actions. The main use of the electronic nose was demonstrated to be as a simple and rapid method for identifying a spilled oil source.

    Chapter 1 8 Introduction 8 1.1 Introduction 8 1.2 Objective of the work 10 1.2.1 Development of on-line derivatization gas chromatography 10 1.2.2 Development of liquid chemical ionization mass spectrometry 10 1.2.3 Analytical applications of electronic nose 11 References 12 Chapter 2 16 Selective on-line derivatization study of polar functional groups by phenyl-trimethylammonium iodide ion-pair reagent using gas chromatography-mass spectrometry 16 2.1 Introduction 16 2.2 Experimental 18 2.2.1 Chemical and reagents 18 2.2.2 Sample preparation 18 2.2.3 On-line derivatization in GC injector 18 2.2.4 GC-MS analysis 18 2.3 Results and discussion 20 2.3.1 Effect of injection temperature 20 2.3.2 GC-MS analysis of 1-naphthoic acid 20 2.3.3 GC-MS analysis of 1-naphthol 20 2.3.4 GC-MS analysis of naphthalene-1-carboxyamide 21 2.3.5 Comparison of PTMA-I and TMA-OH 22 2.4 Conclusions 24 References 25 Chapter 3 34 Chemical ionization of substituted naphthalenes using tetrahydrofuran as a reagent in gas chromatography with ion trap mass spectrometry 34 3.1 Introduction 34 3.2 Experimental 36 3.2.1 Chemicals and reagents 36 3.2.2 On-column derivatization using TMA-OH reagent 36 3.2.3 GC-MS analysis 36 3.3 Results and discussion 38 3.3.1 THF chemical ionization 38 3.3.2 Effect of proton affinity on THF CI-MS spectra of substituted naphthalene compounds 38 3.3.3 Condensation reactions in THF chemical ionization 39 3.3.4 Substituent effects on THF CI mass spectra of naphthalene compounds 40 3.3.5 Site specific cluster attachment in NA-COOCH3 and NA-CON(CH3)2 41 3.4 Conclusions 43 References 44 Chapter 4 52 Selective adduct formation by furan chemical ionization reagent in gas chromatography ion trap mass spectrometry 52 4.1 Introduction 52 4.2 Experimental 55 4.2.1 Chemical and reagents 55 4.2.2 On-column derivatization using TMA-OH ion-pair reagent 55 4.2.3 GC-MS analysis 55 4.3 Results and discussions 57 4.3.1 Furan as CI reagent 57 4.3.2 Comparison of influence of proton affinity effect 57 4.3.3 Activity effect of substituents on [C3H3]+ adduct ion formation 58 4.3.4 Selectivity in furan CI 60 4.3.5 Analysis of amino acids using furan CI 60 References 63 Chapter 5 72 Determination of hydroxyl-containing endocrine disruptors in surface water by on-line derivatization gas chromatography-ion trap mass spectrometry with electron impact and chemical ionization 72 5.1 Introduction 72 5.2 Experimental 74 5.2.1 Chemicals and reagents 74 5.2.2 Sample collection 74 5.2.3 Sample extraction and preparation 74 5.2.4 On-line derivatization using TMA-OH reagent 75 5.2.5 GC-MS analysis 75 5.3 Results and discussion 77 5.3.1 On-line derivatization of EDs 77 5.3.2 Sensitivity evaluation using EI MS and CI MS 78 5.3.3 CI MS/MS 78 5.3.4 Linearity, precision, detection limits, and recovery 79 5.3.5 Application to environmental samples 79 5.4 Conclusions 81 Reference 82 Chapter 6 94 Selective and sensitive method for detection of amphetamines in trace urine sample using on-line derivatization gas chromatography with furan chemical ionization mass spectrometry 94 6.1 Introduction 94 6.2 Experimental section 97 6.2.1 Chemicals and Reagents 97 6.2.2 Sample preparation 97 6.2.3 On-line derivatization in GC injector 97 6.2.4 GC-MS analysis 98 6.3 Results and discussion 100 6.3.1 On-line derivatization 100 6.3.2 Selectivity using furan CI MS Analysis 101 6.3.3 Furan CI MS/MS detection 101 6.3.4 Method validation 102 6.3.5 Analysis of Urine samples 103 6.4 Conclusion 104 References 105 Chapter 7 119 A simple and rapid method for identifying the source of spilled oil using an electronic nose: confirmation by gas chromatography with mass spectrometry 119 7.1 Introduction 119 7.2 Experimental 122 7.2.1 Materials and sample preparation 122 7.2.2 Sensors array: eNose analysis 122 7.2.3 FGC/SAW: zNose analysis 123 7.2.4 GC-MS Analysis 123 7.3 Results and discussion 125 7.3.1 Identification using eNose 125 7.3.2 Identification using zNose 126 7.3.3 Non-specific determination of TPHs 127 7.3.4 Specific determination of PAHs and their alkylated homologues 127 7.3.5 Specific determination of the n-alkanes 128 7.4 Conclusions 129 References 130

    (1) Knapp, D. R. Handbook of Analytical Derivatization Reactions; Wiley: New York, 1979.
    (2) Segura, J.; Ventura, R.; Durado, C. J. Chromatogr. B 1998, 713, 61-90.
    (3) Blau, K.; Halker, J. M. Handbook of Derivatives for Chromatography, 2nd ed.; Wiley: Chichester, 1993.
    (4) El-Haj, B. M.; Al-Amri, A. M.; Hassan, M. H.; Ali, H. S.; Bin Khadem, R. K. Forensic Sci. Int. 2003, 135, 16-26.
    (5) Opfermann, G.; Schaenzer, W. Recent Adv. Doping Anal. Proc. Manfred Donike Workshop, Cologne Workshop Dope Anal.14th., 1996.
    (6) Klaffenbach, P.; Holland, P. T. J. Agric. Food Chem. 1993, 41, 396-401.
    (7) Klaffenbach, P.; Holland, P. T. Biol. Mass Spectrom. 1993, 22, 565-578.
    (8) Wang, Z. D.; Fingas, M.; Landriault, M.; Sigouin, L.; Castle, B.; Hostetter, D.; Zhang, D. C.; Spencer, B. Hrc-J. High Res. Chromatogr. 1998, 21, 383-395.
    (9) Wang, Z. D.; Fingas, M.; Sigouin, L. LC GC N. Am. 2000, 18, 1058-1074.
    (10) Jensen, T. S.; Arvin, E.; Svensmark, B.; Wrang, P. Soil Sediment Contam. 2000, 9, 549-577.
    (11) Goodnough, D. B.; Lutz, M. P.; Wood, P. L. J. Chromatogr. B 1995, 667, 223-232.
    (12) Preu, M.; Guyot, D.; Petz, M. J. J. Chromatogr. A 1998, 818, 95-108.
    (13) Soderling, A. S.; Ryberg, H.; Gabrielsson, A.; Larstad, M.; Toren, K.; Niari, S.; Caidahl, K. J. Mass Spectrom. 2003, 38, 1187-1196.
    (14) Sievert, H. J. P. Chirality 1994, 6, 295-301.
    (15) Dobson, R. L. M.; Dirr, M. K.; Merkt, B. L. J. Mass Spectrom. 1997, 32, 1290-1298.
    (16) Ding, W. H.; Chen, C. T. J. Chromatogr. A 1999, 862, 113-120.
    (17) Berg, K. J.; Boon, J. J.; Pastorova, I.; Spetter, L. F. M. J. Mass Spectrom. 2000, 35, 512-533.
    (18) Munson, M. S. B.; Field, F. H. J. Am. Chem. Soc. 1966, 88, 2621-2630.
    (19) Harrison, A. G. Chemical Ionization Mass Spectroscopy; CRC Press: Boca Raton, 1983.
    (20) Munson, B. Int. J. Mass Spectrom. 2000, 200, 243-251.
    (21) Brodbelt, J. S. Mass Spectrom. Rev. 1997, 16, 91-110.
    (22) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695-808.
    (23) Keough, T.; DeStefano, A. J. Finnigan Spectra 1982, 8, 7-17.
    (24) Donovan, T.; Brodbelt, J. Org. Mass Spectrom. 1992, 27, 9-16.
    (25) McLafferty, F. W. Science 1981, 214, 280-287.
    (26) Yost, R. A.; Enke, C. G. Anal. Chem. 1979, 51, 1251-1261A.
    (27) Munson, B. Anal. Chem. 1977, 49, 772-778A.
    (28) Richter, W. J.; Schwartz, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 424-439.
    (29) Vairamani, M.; Mirza, U. A.; Srinivas, R. Mass Spectrom. Rev. 1990, 9, 235-258.
    (30) Vairamani, M.; Saraswathi, M.; Siva Kumar, K. V. Org. Mass Spectrom. 1993, 28, 689-692.
    (31) Prabhakar, S.; Vairamani, M. Mass Spectrom. Rev. 1997, 16, 259-281.
    (32) Budzikiewicz, H. Anal. Chem. 1985, 321, 150-158.
    (33) Ferrer-Correia, A. J. V.; Jennings, K. R.; Sharma, D. K. S. Org. Mass Spectrom. 1976, 11, 867-872.
    (34) Lane, D. C.; McGuire, M. Org. Mass Spectrom. 1983, 18, 494-495.
    (35) Keough, T. Anal. Chem. 1982, 54, 2540-2547.
    (36) Dzidic, I. J. Am. Chem. Soc. 1972, 94, 8333-8335.
    (37) Orlando, R.; Strobel, F.; Ridge, D. P.; Munson, B. Org. Mass Spectrom. 1987, 22, 597-605.
    (38) Wang, S.; Sah, Y.; Xu, S.; Pan, J. Anal. Chem. 1985, 57, 2283-2286.
    (39) Douglas, G. S.; Bence, A. E.; Prince, R. C.; Mcmillen, S. J.; Butler, E. L. Environ. Sci. Technol. 1996, 30, 2332-2239.
    (40) Boehm, P. D.; Page, D. S.; Burns, W. A.; Bence, A. E.; Mankiewicz, P. J.; Brown, J. S. Environ. Sci. Technol. 2001, 35, 471-479.
    (41) Wang, Z.; Fingas, M.; Blenkinsopp, S.; Sergy, G.; Landriault, M.; Sigouin, L.; Lambert, P. Environ. Sci. Technol. 1998, 32, 2222-2232.
    (42) Kaipainen, A.; Ylisuutari, S.; Lucas, Q.; Moy, L. Int. Sugar J. 1997, 99, 403-408.
    (43) Freitas, A. M. C.; Parreira, C.; Vilas-Boas, L. J. Food Compos. Anal. 2001, 14, 513-522.
    (44) Natale, C. D.; Macagnano, A.; Paolesse, R.; Tarizzo, E.; Mantini, A.; D'Amico, A. Sens. Actuators B 2000, 65, 216-219.
    (45) Ali, Z.; O'Hare, W. T.; Theaker, B. J. J. Therm. Anal. Calorim. 2003, 71, 155-161.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE