簡易檢索 / 詳目顯示

研究生: 陳永昌
Chen, Yong-Chang
論文名稱: 二維隨機晶格上傳輸延遲之探討
On the Transmission Delay Over a Two-Dimensional Random Lattice
指導教授: 張正尚
Chang, Cheng-Shang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 27
中文關鍵詞: 隨機晶格滲透理論傳輸延遲
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中我們探討在二維隨機晶格上的傳輸延遲特性。在所使用的正方形晶格模型中每一條連結(link)被視作為獨立的開關程序(on-off process),其鏈接期間(connection period)以及中斷期間(disconnection period)分別為具有不同速率之指數分布隨機變數。我們對此具有時變特性的隨機晶格做取樣,每一個封包將可於取樣時間點上依照不同的傳輸方案由一節點傳輸至另一節點。對每個時間取樣點而言,我們所採用的晶格模型可被視為滲透理論(percolation theory)中的鍵結滲透模型(bond-percolation model)。滲透理論已有相當廣泛的應用於各種不同的領域之中,尤其近年來於無線傳輸以及大型複雜網路的研究中皆具有一定程度的重要性。不同的滲透模型(percolation model)也被應用於各種不同的無線通訊環境或是網路架構。
      在本文所提出的晶格架構之下,連結機率(connection probability)成為一個極為重要的變量。對於滲透理論的認識只有在相當高的連結機率之下任兩節點之間才有足夠存在完整點對點傳輸通道的可能性。因此於文中所提出的傳輸方案運用了儲存¬攜帶與遞送(store-carry-and-forward)的概念,這樣的傳輸方式以及所提出的晶格架構或許提供了一個基本的模型可被應用於感測網路,口袋交換網路或是車用行動通訊網路等環境。


    Contents List of Figures 1 Introduction 2 Transmission Schemes 3 Delay Analysis for Independent Connection Patterns 3.1 The fixed-path scheme 3.2 The k-path scheme 3.3 The greedy routing scheme 4 Simulation Results 5 Conclusion

    [1] S. R. Broadbent and J. M. Hammersley, \Percolation processes. I. Crystals and
    Mazes," in Proceedings of the Cambridge Philosophical Society, Soc. 53, pp. 629-641,
    1957.
    [2] M. Houssa, T. Nigam, P. W. Mertens, and M. M. Heyns, \Soft breakdown in ultra-
    thin gate oxides: Correlation with the percolation theory of nonlinear conductors,"
    in Applied Physics Letters, vol.73, pp.514-516, 1998.
    [3] Hans Leuenberger, \The application of percolation theory in powder technology," in
    Advanced Powder Technology, vol.10, Issue 4, pp.323-352, 1999.
    [4] K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Sha□er, and A.H. Windle, \Ultra-low
    electrical percolation threshold in carbon-nanotube-epoxy composites," in Polymer,
    vol.44, Issue 19, pp.5893-5899, 2003.
    [5] M. E. J. Newman and D. J. Watts, \Scaling and percolation in the small-world
    network model," in Physical Review Letters, vol.60, Issue 6, pp.7332-7342, 1999.
    [6] Duncan S. Callaway, M. E. J. Newman, Steven H. Strogatz, and Duncan J. Watts,
    \Network Robustness and Fragility: Percolation on Random Graphs," in Physical
    Review Letters, vol.85, no.25, pp.5468-5471, 2000.
    [7] Massimo Franceschetti, Olivier Dousse, David N. C. Tse, and Patrick Thirans, \Clos-
    ing the gap in the capacity of wireless networks via percolation theory," in IEEE
    Transactions on Information Theory, vol.53, no.3, pp.1009-1017, 2007.
    [8] Martin Haenggi, Je□rey G. Andrews, Francois Baccelli, Olivier Dousse, and Massimo
    Franceschetti, \Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks," in IEEE Journal on Selected Areas in Communications,
    vol.27, Issue 25, pp.1029-1046, 2009.
    [9] Harry Kesten, \What is ... Percolation," in Notices of the AMS, vol.3, no.5, pp.572-
    573, 2006.
    [10] J. W. Essam, \Percolation theory," in Reports on Progress in Physics, vol.43, no.7,
    pp.833-909, 1980.
    [11] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S. Raghavendra, \Ef-
    ‾cient Routing in Intermittently Connected Mobile Networks: The Single-copy
    Case," in IEEE/ACM Transactions on Networking, vol.16, Issue 1, pp.63-76, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE