簡易檢索 / 詳目顯示

研究生: 李志杰
Li, Chih-Chieh
論文名稱: 運用高速粒子影像測速技術探討火焰與流場動態交互作用
The Study of Dynamic Interactions between Flames and Flow via High-speed PIV Measurement
指導教授: 楊鏡堂
Yang, Jing-Tang
陳榮順
Chen, Rong-Shun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 217
中文關鍵詞: 衝擊流場火焰交互作用預熱效應鈍體燃燒器粒子影像測速儀(PIV)預混火焰
外文關鍵詞: Impinging flame, Flame-interaction, Preheated effect, Bluff-body burner, Particle image velocimetry (PIV)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展高速粒子影像測速技術,量測火焰與流場交互作用時的動態特性,利用每秒1000張影像之擷取速度,計算其即時速度場分佈,並進行流場中渦度場分佈、速度變化量分佈、速度擾動量分佈、紊流強度分佈及雷諾剪應力分佈等流場特性分析。所探討之主題為兩向斜衝擊及三向斜衝擊火焰中多股火焰間的交互作用及對穩焰特性之效應,也深入研究鈍體雙噴流燃燒器中,不同空氣噴流速度所形成的流場結構與非預混火焰間的交互作用。
    兩向衝擊火焰經相互衝擊後,產生火焰間的交互作用,此交互作用使得兩股火焰產生相互的質量傳遞及熱量傳遞,改變了火焰本身的預熱模式與反應物擴散模式,火焰面反應區之預熱現象除了自身火焰前緣之熱釋放,也同時包括另一火焰之熱釋放,使得反應區預熱效應大幅提升,加上迴流結構效應更加強穩焰效果,反應物之擴散也不只是來自火焰本身之上游,也同時來自另一股預混燃氣,同時,火焰前緣受到流場衝擊拉伸作用,使得火焰前緣產生劇烈變化,火焰型態從分離火焰變化成合併火焰及接觸火焰。
    三向衝擊火焰,為兩向衝擊火焰中加入垂直方向之第三股預混火焰,三股預混燃氣的相互衝擊增加了流場中速度的擾動量,更有助於燃氣之混合效益,提高燃燒反應,而三股預混火焰間的交互作用,使得□值為1.0之火焰產生0.75 m/s的垂直方向速度變化量,為其他當量比火焰的2-3倍,火焰型態也從□值為1.5的錐形火焰變為□值為1.0的接觸火焰,火焰面從完整的錐形轉變為內縮至凹槽內,成為三股相鄰的預混火焰。
    在鈍體燃燒器中,固定中心燃料噴流的速度並改變外環空氣噴流的速度,形成不同的流場結構並與預混火焰進行交互作用,所形成的流場主要結構分別為環形渦漩及迴流結構,不同的流場結構主導著燃料與空氣的混合特性,因此形成不同的火焰型態,分別為層流火焰、過渡火焰及迴流火焰。在低的空氣噴流速度時,迴流結果並不完整,因此,環形渦流主導流場特性,在高的空氣噴流速度時,則為迴流結構主導著火焰型態。本文同時發現,非預混火焰的振盪行為中,St數隨著外環空氣噴流雷諾數(Rea)增加,但隨著中心燃料噴流雷諾數(Rec)的增加而降低,顯示外環空氣噴流速度及中心燃料噴流速度,對於火焰振盪特性存在著完全不同的效應,並且St數與中心燃料噴流雷諾數(Rec)的倒數存在著St.Rec = C St的關係。
    本研究所發展的粒子影像測速儀技術,具有高時序解析及高空間解析能力,能夠獲得時間間隔為1 ms之連續暫態速度分佈,每張粒子影像的畫素為1280× 1024,能夠解析流場中的小尺度結構,除了量測火焰內部之速度分佈,並並進一步將此技術運用於發展微粒子影像測速儀(micro-PIV),量測微混合器(micro-mixer)及微液珠(micro-droplet)的中暫態流場,有助於了解微流體之運動行為及混合機制。


    目 錄 摘要……………………………………………………………………………………i Abstract………………………………………………………………………………iii 誌謝…………………………………………………………………………………..vi 目錄………………………………………………………………………………….vii 圖表目錄……………………………………………………………………………...x 符號說明…………………………………………………………………………..xxix 第一章 前言………………………………………………………………………….1 1-1 研究動機…………………………………………………………………..1 1-2 文獻回顧…………………………………………………………………..4 1-2-1 衝擊火焰…………………………………………………………...4 1-2-2 非定常拉伸效應…………………………………………………...4 1-2-3 燃料的選用………………………………………………………...8 1-2-4 熱損失效應………………………………………………………...8 1-2-5 燃燒方式…………………………………………………………...9 1-2-6 流場結構………………………………………………………….10 1-2-7 預熱效應………………………………………………………….12 1-2-8 火焰交互作用…………………………………………………….14 第二章 實驗裝置與方法…………………………………………………………...17 2-1 實驗裝置…………………………………………………………………...17 2-1-1 測試區與供氣系統……………………………………………….17 2-1-2 流場觀測系統…………………………………………………….19 2-1-3 速度場量測系統………………………………………………….20 2-2 實驗方法…………………………………………………………………...24 2-2-1 火焰型態觀察…………………………………………………….25 2-2-2 流場可視化觀察………………………………………………….25 2-2-3 速度場量測……………………………………………………….25 第三章 兩向衝擊預混火焰流場研究……………………………………………...34 3-1 兩向衝擊燃燒器幾何結構………………………………………………...34 3-2 兩向衝擊流場……………………………………………………………...35 3-3 火焰型態分類……………………………………………………………...36 3-4 兩向衝擊火焰流場結構…………………………………………………...38 3-5 兩向衝擊火焰中火焰之交互作用行為…………………………………...40 第四章 三向衝擊預混火焰流場研究……………………………………………...96 4-1 三向衝擊型燃燒器幾何結構……………………………………………...96 4-2 三向衝擊流場之火焰型態………………………………………………...97 4-3 三向衝擊火焰流場特性…………………………………………………...99 第五章 鈍體燃燒器中非預混火焰流場研究…………………………………….149 5-1 火焰型態觀察…………………………………………………………….149 5-2 鈍體燃燒器流場特性…………………………………………………….150 5-3 鈍體燃燒器非預混火焰速度分佈……………………………………….151 5-4 鈍體燃燒器非預混火焰暫態流場……………………………………….152 5-5 鈍體燃燒器局部流場特性……………………………………………….153 5-6 鈍體燃燒器中火焰振盪行為分析……………………………………….155 第六章 結論與展望……………………………………………………………….199 6-1 結論……………………………………………………………………….199 6-2 展望……………………………………………………………………….203 第七章 參考文獻………………………………………………………………….205 學經歷表與著作目錄……………………………………………………………...213

    Abdel-Gayed, R. G., Bradley, D., and Lawes, M., 1987, “Turbulent Burning Velocities: A General Correlation in Terms of Straining Rates,” Prof. R. Soc, Lond A, Vol. 414, pp. 389-413.
    Arai, M. Sato, H., and Amagai, K., 1999, “Gravity Effects on Stability and Flickering Motion of Diffusion Flames,” Combustion and Flame, Vol. 118, pp. 293-300.
    Blevins, L. G. and Gore, J. P., 1999, “Computed Structure of Low Strain Rate Partially Premixed CH4/Air Counterflow Flames: implications for NO Formation,” Combustion and Flame, Vol. 116, pp. 546-566.
    Bennett, B. A. V., McEnally, C. S., Pfefferle, L. D., and Smooke, M. D., 2000, “Computational and Experimental Study of Axisymmetric Coflow Partially Premixed Methane/Air Flames,” Combustion and Flame, Vol. 123, pp. 522-546.
    Bell, J. B., Cheng, R. K., Marcus. S. D., and Shepherd, I. G., 2007, “Nmerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames,” Proceedings of the Combustion Institute, Vol. 31, pp. 1309-1317.
    Chen, R. H., and Discroll, J. F., 1988, “The Role of the Recirculation Vortex in Improving Fuel-Air Mixing within Swirling Flames,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 531-540.
    Chen, T. H., and Goss, L. P., 1991, “Statistical OH-Zone Structures of Turbulent Jet Flames from Liftoff to Near-Blowout,” Combustion Science and Technology, Vol. 79, pp. 311-324.
    Cho, P., Law, C. K., Cheng, R. K., and Shepherd, I. G., 1988, “Velocity and Scalar Fields of Turbulent Premixed Flames in Stagnation Flow,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 739-745.
    Chen, Y. C., Chang, C. C., Pan, K. L., and Yang, J. T., 1998, “Flame Lift-off and Stabilization Mechanisms of Nonpremixed Jet Flames on a Bluff-body Burner,” Combustion and Flame, Vol. 115, pp. 51-65.
    Cheng, T. S., Chao, Y. C., Wu, D. C., Hsu, H. W., and Yuan, T., 2001, “Effects of Partial Premixing on Pollutant Emissions in Swirling Methane Jet Flames,” Combustion and Flame, Vol. 125, pp. 865-878.
    Chun, W. C. and Ishwar, K. P., 2001, ”Contribution of Curvature to Flame-Stretch Effects on Premixed Flames,” Combustion and Flame, Vol. 126, pp. 1640-1654.
    Disimile, P. J., Savory, E., and Toy, N., 1995, “Mixing Characteristic of Twin Impinging Circular Jets,” Journal of Propulsion and Power, Vol. 11, No. 6, pp. 1118-1124.
    Domingo, P., and Vervisch, L., 1996, “Triple Flames and Partially Premixed Combustion in Autoignition of Non-premixed Turbulent Mixtures, ” Twenty-sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 233-240.
    Figliola, R., and Beasley, D., 1995, Theory and Design for Mechanical Measurements, John Wiley & Sons, New York, Chapter 4.
    Gutmark, E., and Schadow, K. C., 1996, “Suppression of “Buzz” Instability by Geometrical Design of the Flameholder,” AIAA Journal, Vol.34, pp. 90-102.
    Guo, H., Liu, F., and Smallwood, G. J., 2005, “A Numerical Study on NOx Formation in Laminar Counterflow CH4/air Ttriple Flames,” Combustion and Flame, Vol. 143, pp. 282-298.
    Han, D. and Mungal, M. G., 2003, “Simultaneous Measurements of Velocity and CH Distribution. Part II: Deflected Jet Flames,” Combustion and Flame, Vol. 133, pp. 1-17.
    Hou, S. S., Yang, S. S., Chen, S. J. and Lin, T. H., 2003, ”Interactions for Flames in a Coaxial Flow with a Stagnation Point,” Combustion and Flame, Vol. 132, pp. 58-72.
    Jose, O. S., James, F. D., Charles, J. M., Jeffrey, M. D., and Campbell, D. C., 2003, “Propagation Speeds and Stretch Rates Measured along Wrinkled Flames to Assess the Theory of Flame Stretch,” Combustion and Flame, Vol. 133, pp 323-334.
    Kanury, A., 1975, Introduction to Combustion Phenomena, Gordon and Breach Science Publishers, New York, Chapter 7 & Chapter 8.
    Kawaguchi, O., Kinoshita, J., and Sato, G. T., 1985, “Premixed Flames at a Multi-Slit Burner,” 日本機械學會論文集(B篇), 51卷, 467號.
    Kostiuk, L. W., and Cheng, R. K., 1993, “Experimental Study of Premixed Turbulent Combustion in Opposed Streams,” Combustion and Flame, Vol. 92, pp. 396-409.
    Kuo, K. K., 1986, Principle of Combustion, John Wiely and Sons Press, New York, Chapter 5 & Chapter 6.
    Lenze, B., and Milano, M. E., 1975, “ The Mutual Influence of Multiple Jet Diffusion Flames,” Combustion Science and Technology, Vol. 11, pp. 1-8.
    Li, X., and Tankin, R. S., 1987, “A Study of Cold and Combusting Flow Around Bluff-Body Combustors,” Combustion Science and Technology, Vol. 52, pp. 173-206.
    Liu, Y. and Lenze, B., 1988, “The Influence of Turbulence on the Burning Vlocity of Premixed CH4-H2 Flames with Different Laminar Burning Velocities,” Twenty-second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 747-754.
    Liou, T. M., Lee, H. L., and Liao, C. C., 2000, “ Effects of Inlet Guide-vane Number on Flowfields in a Side-dump Combustor,” Experimental Thermal and Fluid Science, Vol. 24, pp. 11-23.
    Masri, A. R., and Bilger, R. W., 1984, “Turbulent Diffusion Flames of Hydrocarbon Fuels Stablized on a Bluff Body,” Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 319-326.
    Meneveau, C., and Poinsot, T., 1991, “Stretching and Quenching of Flameletes in Premixed Turbulent Combustion”, Combustion and Flame, Vol. 86, pp. 311-332.
    Matovic, M., Oka, S., and Durst, F., 1994, “Structure of the Mean Velocity and Turbulence in Premixed Axisymmetric Acetylene Flames,” Journal of Fluids Engineering, Vol. 116, pp. 631-642.
    Maughan, J. R., 1995, “Two Stage Flames Stabilization for a Gas Burner,” United States Patent NO. 5,408,984.
    Mohr, J. W., Seyed-Yagoobi, J., and Page, R. H., 1996, “Combustion Measurements from an Impinging Radial Jet Reattachment Flame,” Combustion and Flame, Vol. 106, pp. 69-80.
    Naha, S. and Aggarwal, S. K., 2004, “Fuel Effects on NOx Emissions in Partially Premixed Flames,” Combustion and Flame, Vol. 139, pp. 90-105.
    Otsuka, T., Shinozaki, K., Toyoyama, K., and Ishihara, S., 1990, “Gas Burner,” United States Patent NO. 4,927,356.
    Peter, N., 1986, “Laminar Flamelet Concept in Turbulent Combustion,” Twenty-first Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1231-1250.
    Poinsot, T., Veyname, D., and Candel, S., 1991, “Quenching Processes and Premixed Turbulent Combustion Diagrams,” Journal of Fluid Mechanics, Vol. 288, pp. 561-602.
    Seitzman, J. M., Paul, P. H., and Hanson, R. K., 1990, “Imaging and Characterization of OH Structures in a Turbulent Nonpremixed Flame, ” Twenty-third Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 637-644.
    Stwalley, R. M., and Lefebvre, A. H., 1987, “Flame Stabilization Using Large Flameholders of Irregular Shape,” Journal of Propulsion and Power, Vol. 4, pp. 4-13.
    Samaniego, J.-M., and Mentel, T., 1999, “Fundamental Mechanisms in Premixed Turbulent Flame Propagation via Flame-Vortex Interaction,” Combustion and Flame, Vol. 118, pp.537-556.
    Sohn, C. H., Jeong, I. M., and Chung, S. H., 2002, “Numerical Study of the Effects of Pressure and Air-Dilution on Formation in Laminar Counterflow Diffusion Flames of Methane in High Temperature Air,” Combustion and Flame, Vol. 130, pp. 83-93.
    Turn, S. R., 2000, An Introduction to Combustion, Concepts and Application, McGraw-Hill International Edition.
    Williams, F., 1985, Combustion Theory, Second Ed., Benjamin-Cummings, Menlo Park, California, Chapter 7.
    Yang, J. T., and Tsai, G. L., 1993, “ The Wake Flow Structure of an Open-Slit V-gutter,” Journal of Fluids Engineering, Vol. 115, pp. 13-20.
    Yang, J. T., Yen, C. W., and Tsai, G. L., 1994, “Flame Stabilization in the Wake Flow Behind a Slit V-Gutter,” Combustion and Flame, Vol. 99, pp. 288-294.
    Yang, J. T., Pan, K. L., and Chang, C. C., 1997, “Effects of Recirculating Annular-Air Flow on Dynamics of Wake Flame Around a Circular Disc, ” Proceedings of the 16th International Colloquium on the Dynamics of Explosion and Reactive Systems, Cracow, Poland, pp. 120-123.
    Yokomori, T. and Mizomoto, M., 2003, “Flame Temperatures along a Laminar Premixed Flame with a Non-Uniform Stretch Rate,” Combustion and Flame, Vol. 135, pp. 489-502.
    張家齊,1996,鈍體燃燒器之同心雙噴流火焰結構研究,國立清華大學動力機械工程學系博士論文。
    孫泊寧,1997,高負荷燃燒器之設計實作與火焰結構分析,國立清華大學動力機械工程學系碩士論文。
    陳相甫,1999,單/多排燃燒器之設計與實作,國立清華大學動力機械工程學系碩士論文。
    陳福安,2000,高負荷燃燒器之火焰雷射診測與燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
    鄭翰昌,2001,多向衝擊型燃燒器燃燒機制研究,國立清華大學動力機械工程學系碩士論文。
    康有評,2002,雙噴流鈍體燃燒器非預混火焰結構之尺度效應研究,國立清華大學動力機械工程學系博士論文。
    蔣淑卿, 2002,複合進氣道燃燒器之火焰結構研究中,國立清華大學動力機械工程學系碩士論文。
    黃木丈俊,藤生昭,1995,「燃燒器裝置」,日本國特許廳公開特許公報,特開平7-151319。
    白井豐,守屋好文,原正一,1995,「燃燒器裝置」,日本國特許廳公開特許公報,特開平7-260108。
    楊鏡堂,高智勇,1999,「對流衝擊型燃燒器」,中華民國新型專利第149086號。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE