研究生: |
張紘愷 Chang, HongKai |
---|---|
論文名稱: |
含發色團的光響應性聚(正丁基甲基丙烯酸酯)致動器之光學與機械性質研究 Optical and Mechanical Properties Studies of Photoresponsive Poly(n-butyl methacrylate) Actuators Containing Chromophores |
指導教授: |
堀江正樹
Horie, Masaki |
口試委員: |
林昆翰
Lin, Kun-Han 游進陽 Yu, Chin-Yang 陳楷荏 Chen, Kai-Jen 八島榮次 Yashima, Eiji |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 158 |
中文關鍵詞: | 聚正丁基甲基丙烯酸 、光熱轉換 、影像追蹤 、發色團 、驅動器 、動態機械分析 、微力測量 |
外文關鍵詞: | Poly(n-butyl methacrylate), photothermal conversion, image tracking, chromophore, actuator, DMA, microforce measurement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本博士論文承襲筆者以第一作者身份發表於《Materials Today Chemistry》期刊之研究成果〈Linear and cyclic multi-dithienylethene molecules: Synthesis, photochromism, photothermal conversion, and computational study 〉。於上開研究中,筆者獨立以密度泛函理論(DFT)、時間依賴性DFT(TD-DFT)完成所有分子層級的量子化學計算,包括:自由能計算、環張力分析、過渡態搜尋、反應途徑分析與光譜模擬等,完整建構了DTE分子的光致變色與熱反應機制。由於上開計算已趨於完整因此本論文僅聚焦於過去文獻較為缺乏、但在實際應用上卻極具潛力的軟性聚正丁基甲基丙烯酸酯(PBMA)光響應驅動器研究。於本論文中,筆者設計並探究不同類型的光響應驅動器,通過添加多種發色團分子實現:具體而言,藉由摻入光致變色型DTE衍生物及非光致變色型發色團(二茂鐵超分子和蒽醌偶氮苯衍伸物)至聚正丁基甲基丙烯酸酯高分子基材中,成功製備自支撐薄膜(free-standing film)與毛細管內部驅動裝置等驅動器。
具體而言在第二章中,筆者透過密度泛函理論計算,發現了DTE分子除已知的平行與反平行構象外,還存在第三種非對稱構象,佔總平衡構象分布約10.5%。此發現糾正了過去研究中僅考慮兩種構象的局限,為光致變色效率估算提供了更精確的理論依據。進一步以動態機械分析結果顯示,DTE衍生物摻雜PBMA薄膜後,玻璃轉化溫度(Tg)有顯著下降,表明DTE分子能增加高分子鏈的靈活性。本研究首次觀察到DTE摻雜薄膜在激光照射過程中的「兩階段式溫度下降」現象,反映了從關環態轉換為開環態時的光熱轉換效率變化,關環態下高達28%,開環態約19%。
第三章探討了二茂鐵超分子(Fc2MeS)摻雜PBMA薄膜的光響應特性。單晶X射線繞射分析顯示,Fc2MeS超分子結構具有高達17%的自由體積,優於傳統單取代二茂鐵超分子。DMA分析證實,隨著Fc2MeS添加濃度從9 wt%增至17.7 wt%,PBMA薄膜的玻璃轉化溫度升高,但儲存模量與損耗模量均下降,損耗正切(tanδ)也降低,表明材料的彈性回復性能改善。17.7 wt% Fc2MeS薄膜在445 nm激光照射下,可產生相當於自身重量1000倍的力(約100 mg)。此外,DMA熱膨脹分析顯示,高濃度Fc2MeS薄膜不僅具有更大的最大熱膨脹率(6.2%),更重要的是克服了純PBMA在高溫下收縮的缺點。
第四章研究了蒽醌偶氮苯腈(AZO)摻雜PBMA薄膜的性能。該分子採用平面結構設計,增強了π-π相互作用及PBMA薄膜的熱穩定性。DMA分析表明,4.8 wt% AZO薄膜的玻璃轉化溫度略高於純PBMA,但其損耗正切大幅降低,表明材料具備更理想的彈性回復性能。光響應測試顯示,AZO薄膜在445 nm激光照射下可產生高達120 mg的輸出力(相當於自身重量的1200倍),面積膨脹率達2.3%,優於其他發色團系統。雖然在多次光照循環後觀察到輕微的不可逆收縮,但其相對膨脹比例保持穩定,實用性不受影響。
綜上所述,本博士論文之主要學術貢獻在於透過理論與實驗相結合的方法,從分子設計到實際應用層面,系統性地探索了光響應性高分子驅動器的關鍵機制與優化策略,更開發出能產生自身重量1200倍力的高效薄膜驅動器,大幅超越現今文獻報導的同類系統。
This doctoral dissertation extends my previous research published as first author in Materials Today Chemistry entitled "Linear and cyclic multi-dithienylethene molecules: Synthesis, photochromism, photothermal conversion, and computational study ". In that study, I independently completed all molecular-level quantum chemical calculations using density functional theory (DFT) and time-dependent DFT (TD-DFT), including free energy calculations, ring strain analysis, transition state searches, reaction pathway analysis, and spectral simulations, which comprehensively established the photochromic and thermal reaction mechanisms of DTE molecules. As these calculations have been thoroughly completed, this dissertation focuses specifically on soft poly(n-butyl methacrylate) (PBMA) photoresponsive actuators, an area relatively underexplored in literature but with significant practical potential.
In this dissertation, I designed and investigated various types of photoresponsive actuators by incorporating different chromophore molecules. Specifically, by doping photochromic DTE derivatives and non-photochromic chromophores (ferrocene-based supramolecular complexes and anthraquinone-azobenzene derivatives) into PBMA polymer matrix, I successfully fabricated free-standing films and capillary-based actuator devices.
In Chapter 2, through density functional theory calculations, I discovered a third, asymmetric conformation of DTE molecules in addition to the previously known parallel and antiparallel conformations, accounting for approximately 10.5% of the total equilibrium conformational distribution. This finding corrects the limitations of previous research that only considered two conformations, providing more accurate theoretical basis for estimating photochromic efficiency. Further dynamic mechanical analysis showed that DTE derivatives doped into PBMA films significantly decreased the glass transition temperature, indicating that DTE molecules enhance polymer chain flexibility. This study was the first to observe a "two-stage temperature decrease" phenomenon in DTE-doped films under laser irradiation, reflecting the change in photothermal conversion efficiency during the transition from closed-ring to open-ring state, reaching 28% in the closed-ring state compared to approximately 19% in the open-ring state.
Chapter 3 investigated the photoresponsive properties of ferrocene supramolecular complex (Fc2MeS) doped PBMA films. Single crystal X-ray diffraction analysis revealed that the Fc2MeS supramolecular structure has a free volume of up to 17%, superior to traditional mono-substituted ferrocene supramolecular complexes. DMA analysis confirmed that as the Fc2MeS concentration increased from 9 wt% to 17.7 wt%, the glass transition temperature of PBMA films increased, while both storage modulus and loss modulus decreased, along with reduced loss tangent (tanδ), indicating improved elastic recovery performance. Under 445 nm laser irradiation, 17.7 wt% Fc2MeS films could generate a force of approximately 100 mg, equivalent to 1000 times their own weight. Furthermore, DMA thermal expansion analysis showed that high-concentration Fc2MeS films not only exhibited greater maximum thermal expansion rates (6.2%) but, more importantly, overcame the contraction drawback of pure PBMA at high temperatures.
Chapter 4 studied the performance of anthraquinone-azobenzonitrile (Azo) doped PBMA films. This molecule was designed with a planar structure, enhancing π-π interactions and thermal stability of PBMA films. DMA analysis showed that 4.8 wt% Azo films had a slightly higher glass transition temperature than pure PBMA, but significantly reduced loss tangent, indicating more desirable elastic recovery performance. Photoresponsive tests demonstrated that Azo films under 445 nm laser irradiation could generate a force of up to 120 mg (equivalent to 1200 times their own weight), with an area expansion rate of 2.3%, superior to other chromophore systems. Although slight irreversible contraction was observed after multiple light cycles, the relative expansion ratio remained stable, not affecting practical utility.
In summary, the main academic contribution of this doctoral dissertation lies in systematically exploring the key mechanisms and optimization strategies of photoresponsive polymer actuators through combined theoretical and experimental methods, from molecular design to practical applications. This work resulted in the development of highly efficient film actuators capable of generating forces 1200 times their own weight, significantly exceeding similar systems reported in current literature.
1. P. Naumov, S. Chizhik, M. K. Panda, N. K. Nath and E. Boldyreva, Chem. Rev., 2015, 115, 12440-12490.
2. T. Kim, M. K. Al-Muhanna, S. D. Al-Suwaidan, R. O. Al-Kaysi and C. J. Bardeen, Angew. Chem. Int. Ed., 2013, 52, 6889-6893.
3. C.-H. Wang, H.-K. Chang, K.-J. Chen, D.-H. Huang, C.-J. Chang, K.-H. Huang, Y.-D. Chiu and M. Horie, ACS Appl. Mater. Interfaces, 2023, 15, 38846-38856.
4. A. Hirano, T. Hashimoto, D. Kitagawa, K. Kono and S. Kobatake, Cryst. Growth Des., 2017, 17, 4819-4825.
5. D. Kitagawa and S. Kobatake, Chem. Commun., 2015, 51, 4421-4424.
6. C.-H. Wang and M. Horie, Mater. Today Chem., 2022, 24, 100852.
7. L. Zhang, H. Liu, Y. Liu and Z. Wu, Chem. Commun., 2022, 58, 3811-3814.
8. S.-C. Cheng, C.-H. Wang, Y.-C. Lin, Y. Tsuchido, Y. Suzaki, Y. Sei, T.-S. Kuo and M. Horie, ACS Appl. Mater. Interfaces, 2020, 12, 50002-50010.
9. J. Liu, Y. Wang, J. Wang, G. Zhou, T. Ikeda and L. Jiang, ACS Appl. Mater. Interfaces, 2021, 13, 12383-12392.
10. S. K. Yesodha, C. K. S. Pillai and N. Tsutsumi, Prog. Polym. Sci., 2004, 29, 45-74.
11. T. Ikeda and O. Tsutsumi, Science, 1995, 268, 1873-1875.
12. A. Boschi, S. Cinili, E. Bystrenova, G. Ruani, J. Groppi, A. Credi, M. Baroncini, A. Candini, D. Gentili and M. Cavallini, J. Mater. Chem. C, 2022, 10, 10132-10138.
13. J. Nakanishi and S. Yamamoto, Biomater. Sci., 2022.
14. S. K. Rastogi, H. E. Anderson, J. Lamas, S. Barret, T. Cantu, S. Zauscher, W. J. Brittain and T. Betancourt, ACS Appl. Mater. Interfaces, 2018, 10, 30071-30080.
15. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890-6891.
16. Y. Liu, W. Wu, J. Wei and Y. Yu, ACS Appl. Mater. Interfaces, 2017, 9, 782-789.
17. E. Uchida, R. Azumi and Y. Norikane, Nat. Commun., 2015, 6, 7310.
18. S.-C. Cheng, K.-J. Chen, Y. Suzaki, Y. Tsuchido, T.-S. Kuo, K. Osakada and M. Horie, J. Am. Chem. Soc., 2018, 140, 90-93.
19. H.-B. Cheng, S. Zhang, J. Qi, X.-J. Liang and J. Yoon, Adv. Mater., 2021, 33, 2007290.
20. E. Uchida, R. Azumi and Y. Norikane, Nat. Commun., 2015, 6, 7310.
21. M. Horie and C.-H. Wang, Mater. Chem. Front., 2019, 3, 2258-2269.
22. K.-J. Chen, Y.-C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat. Commun., 2016, 7, 13321.
23. M. Irie, Chem. Rev., 2000, 100, 1685-1716.
24. M. Irie, T. Fukaminato, K. Matsuda and S. Kobatake, Chem. Rev., 2014, 114, 12174-12277.
25. D. Kitagawa and S. Kobatake, Chem. Commun., 2015, 51, 4421-4424.
26. X. N. Dong, T. Y. Guo, D. Kitagawa, S. Kobatake, P. Palffy-Muhoray and C. J. Bardeen, Adv. Funct. Mater., 2020, 30, 1902396.
27. S. Lin, K. G. Gutierrez-Cuevas, X. Zhang, J. Guo and Q. Li, Adv. Funct. Mater., 2021, 31, 2007957.
28. Y.-J. Lin and M. Horie, Dyes Pigm., 2021, 195, 109700.
29. H.-B. Cheng, S. Zhang, E. Bai, X. Cao, J. Wang, J. Qi, J. Liu, J. Zhao, L. Zhang and J. Yoon, Adv. Mater., 2022, 34, 2108289.
30. I. Hamdi, G. Buntinx, A. Perrier, O. Devos, N. Jaïdane, S. Delbaere, A. Tiwari, J. Dubois, M. Takeshita and Y. Wada, Phys. Chem. Chem. Phys., 2016, 18, 28091-28100.
31. T. Kaieda, S. Kobatake, H. Miyasaka, M. Murakami, N. Iwai, Y. Nagata, A. Itaya and M. Irie, J. Am. Chem. Soc., 2002, 124, 2015-2024.
32. M. Irie, K. Sakemura, M. Okinaka and K. Uchida, J. Org. Chem., 1995, 60, 8305-8309.
33. I. Apsite, S. Salehi and L. Ionov, Chem. Rev., 2022, 122, 1349-1415.
34. Q. Wang, X.-F. Wang, W.-Q. Sun, R.-L. Lin, M.-F. Ye and J.-X. Liu, ACS Appl. Mater. Interfaces, 2023, 15, 2479-2485.
35. L. Hines, K. Petersen, G. Z. Lum and M. Sitti, Adv. Mater., 2017, 29, 1603483.
36. B. Wang, K. Kostarelos, B. J. Nelson and L. Zhang, Adv. Mater., 2021, 33, 2002047.
37. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop and F. Capasso, Science, 2001, 291, 1941-1944.
38. Z. Zhang, Y. Wang, Q. Wang and L. Shang, Small, 2022, 18, 2105116.
39. J. Bao, Z. Wang, C. Song, Y. Zhang, Z. Li, L. Zhang, R. Lan and H. Yang, Adv. Mater., 2023, 35, 2302168.
40. U. Rashid, E. Chatir, L. Medrano Sandonas, P. Sreelakshmi, A. Dianat, R. Gutierrez, G. Cuniberti, S. Cobo and V. Kaliginedi, Angew. Chem. Int. Ed., 2023, 62, e202218767.
41. D. P. Karothu, J. Mahmoud Halabi, L. Li, A. Colin-Molina, B. Rodríguez-Molina and P. Naumov, Adv. Mater., 2020, 32, 1906216.
42. I. Boldea and S. A. Nasar, IEEE Trans. Energy Convers., 1999, 14, 712-717.
43. M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch and M. Sitti, Nat. Rev. Mater., 2022, 7, 235-249.
44. H. D. Bandara and S. C. Burdette, Chem. Soc. Rev., 2012, 41, 1809-1825.
45. C. H. Wang and M. Horie, Mater. Today Chem., 2022, 24, 100852.
46. S. C. Cheng, C. H. Wang, Y. C. Lin, Y. Tsuchido, Y. Suzaki, Y. Sei, T. S. Kuo and M. Horie, ACS Appl. Mater. Interfaces, 2020, 12, 50002-50010.
47. D. G. Patel, T. B. Mitchell, S. D. Myers, D. A. Carter and F. A. Novak, J. Org. Chem., 2020, 85, 2646-2653.
48. A. G. Lvov, L. S. Klimenko, V. N. Bykov and S. Hecht, Chem. Eur. J., 2024, 30, e202303654.
49. R. Klajn, Chem. Soc. Rev., 2014, 43, 148-184.
50. C. Li, A. Iscen, L. C. Palmer, G. C. Schatz and S. I. Stupp, J. Am. Chem. Soc., 2020, 142, 8447-8453.
51. J. Keyvan Rad, Z. Balzade and A. R. Mahdavian, J. Photochem. Photobiol., C, 2022, 51, 100487.
52. S. V. Paramonov, V. Lokshin and O. A. Fedorova, J. Photochem. Photobiol., C, 2011, 12, 209-236.
53. T. Zhang, X.-Y. Lou, X. Li, X. Tu, J. Han, B. Zhao and Y.-W. Yang, Adv. Mater., 2023, 35, 2210551.
54. S. Kobatake, S. Takami, H. Muto, T. Ishikawa and M. Irie, Nature, 2007, 446, 778-781.
55. M. Morimoto and M. Irie, J. Am. Chem. Soc., 2010, 132, 14172-14178.
56. A. Miriyev, K. Stack and H. Lipson, Nat. Commun., 2017, 8, 596.
57. N. El-Atab, R. B. Mishra, F. Al-Modaf, L. Joharji, A. A. Alsharif, H. Alamoudi, M. Diaz, N. Qaiser and M. M. Hussain, Adv. Intell. Syst., 2020, 2, 2000128.
58. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864-B871.
59. S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989-2009.
60. S. Grimme, A. Hansen, S. Ehlert and J.-M. Mewes, J. Chem. Phys., 2021, 154, 064103.
61. J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew and J. Sun, J. Phys. Chem. Lett., 2020, 11, 8208-8215.
62. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
63. A. D. Becke, Physical review A, 1988, 38, 3098.
64. E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2017, 147.
65. E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, S. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys., 2019, 150, 154122.
66. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
67. N. Mardirossian and M. Head-Gordon, J. Chem. Phys., 2016, 144, 214110.
68. F. Neese, WIREs Comput. Mol. Sci., 2018, 8, e1327.
69. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
70. M. Bursch, J.-M. Mewes, A. Hansen and S. Grimme, Angew. Chem. Int. Ed., 2022, 61, e202205735.
71. V. Ásgeirsson, B. O. Birgisson, R. Bjornsson, U. Becker, F. Neese, C. Riplinger and H. Jónsson, J. Chem. Theory Comput., 2021, 17, 4929-4945.
72. G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys., 2000, 113, 9901-9904.
73. H. JÓNSSON, G. MILLS and K. W. JACOBSEN, in Classical and Quantum Dynamics in Condensed Phase Simulations, DOI: 10.1142/9789812839664_0016, pp. 385-404.
74. K. Matsuda and M. Irie, J. Photochem. Photobiol. C: Photochem. Rev., 2004, 5, 169-182.
75. Y. Chen, J. Yang, X. Zhang, Y. Feng, H. Zeng, L. Wang and W. Feng, Mater. Horiz., 2021, 8, 728-757.
76. E. Pontecorvo, C. Ferrante, C. G. Elles and T. Scopigno, J. Phys. Chem. B., 2014, 118, 6915-6921.
77. B. J. Inkson, in Materials characterization using nondestructive evaluation (NDE) methods, Elsevier, 2016, pp. 17-43.
78. M. Scimeca, S. Bischetti, H. K. Lamsira, R. Bonfiglio and E. Bonanno, Eur. j. histochem., 2018, 62, 2841.
79. H. Xu and J. S. Van Deventer, Cem. Concr. Res., 2002, 32, 1705-1716.
80. R. Förch, H. Schönherr and A. T. A. Jenkins, Surface Design: Applications in Bioscience and Nanotechnology, Wiley, 2009.
81. L. N. Lucas, J. Van Esch, R. M. Kellogg and B. L. Feringa, Chem. Commun., 1998, DOI: 10.1039/a806998k, 2313-2314.
82. D. W. van Krevelen and K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions, Elsevier Science, 2009.
83. J. D. Menczel and R. B. Prime, Thermal Analysis of Polymers: Fundamentals and Applications, John Wiley & Sons, 2014.
84. K. P. Menard and N. Menard, Dynamic mechanical analysis, CRC press, 2020.
85. I. M. Ward and J. Sweeney, Mechanical Properties of Solid Polymers, Wiley, 2012.
86. C. G. Robertson, C. J. Lin, M. Rackaitis and C. M. Roland, Macromolecules, 2008, 41, 2727-2731.
87. A. Codou, M. Moncel, J. G. van Berkel, N. Guigo and N. Sbirrazzuoli, Phys. Chem. Chem. Phys., 2016, 18, 16647-16658.
88. S. D. Pask and U. Eisele, Introduction to Polymer Physics, Springer Berlin Heidelberg, 2012.
89. M. M. Coleman, Fundamentals of Polymer Science: An Introductory Text, Second Edition, CRC Press, 2019.
90. R. Xie, A. R. Weisen, Y. Lee, M. A. Aplan, A. M. Fenton, A. E. Masucci, F. Kempe, M. Sommer, C. W. Pester, R. H. Colby and E. D. Gomez, Nat. Commun., 2020, 11, 893.
91. J. Rieger, Polym. Test., 2001, 20, 199-204.
92. M. Ruoho, K. Valset, T. Finstad and I. Tittonen, Nanotechnology, 2015, 26, 195706.
93. J. Cha, J. Seo and S. Kim, J. Therm. Anal. Calorim., 2012, 109, 295-300.
94. D. K. Roper, W. Ahn and M. Hoepfner, J. Phys. Chem. C, 2007, 111, 3636-3641.
95. K.-J. Chen, A. C. Tan, C.-H. Wang, T.-S. Kuo, P.-L. Chen and M. Horie, Cryst. Growth Des., 2019, 19, 17-22.
96. J. J. McKinnon, F. P. A. Fabbiani and M. A. Spackman, Crystal Growth & Design, 2007, 7, 755-769.
97. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka and M. A. Spackman, J. Appl. Crystallogr., 2021, 54, 1006-1011.
98. M. Ashfaq, K. S. Munawar, M. N. Tahir, N. Dege, M. Yaman, S. Muhammad, S. S. Alarfaji, H. Kargar and M. U. Arshad, ACS Omega, 2021, 6, 22357-22366.
99. A. Ali, M. Khalid, M. F. u. Rehman, S. Haq, A. Ali, M. N. Tahir, M. Ashfaq, F. Rasool and A. A. C. Braga, ACS Omega, 2020, 5, 15115-15128.