研究生: |
黃遠鵬 Yuan-Peng Huang |
---|---|
論文名稱: |
運用影像介電泳能量井陣列化單一細胞 Single Cell Arrayed by Image Dielectrophoretic Energy Wells |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 介電泳 、能量井 、實驗室晶片 、微陣列 、單一細胞分析 |
外文關鍵詞: | Dielectrophoresis, Energy well, Lab-on-a-chip, Microarrays, Single cell analysis |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單一細胞微陣列是一種在細胞檢測上極具潛力的工具,它擁有可進行高通量分析的優點並能促進在單一細胞尺度下的相關研究。 本研究提出一種新穎的元件與方法來排列單一細胞微陣列。 結構式介電泳力和影像式介電泳力被用來控制細胞在晶片上的空間分佈。 用介電材料製作出的微凹槽陣列當作實體的屏障來增加細胞的固定性。 利用此介電微結構可以將細胞固定的很好來抵抗微流體流動所產生的拉力。
介電泳產生能量井的概念第一次被用來解釋單一細胞微陣列的分佈情況。 懸浮在液體中的細胞處於不穩定的能量態,會往能量穩定的位置移動。 最後細胞會穩定地停留在微凹槽邊緣底部因為該處是能量最低的位置。
利用這個新方法,單一細胞在微陣列上的填滿率在較低的細胞濃度下,可以增加至45%±1.5%相對於只靠重力的28%±2.0%。 而在較高的細胞濃度下,單一細胞的填滿率可達72%±2.3%相對於只靠重力沉澱的35%±1.9%。 在熟練的操作下最大的單一細胞微陣列可以接近100*100的矩陣。 實驗中發現有一個可能適用於本研究的最佳細胞濃度介於7.3×10^7 to 1.5×10^8 (cells/mL)之間。
麵包酵母菌在本研究中被用來當作樣本。 細胞在5 uS/cm的人工緩衝溶液中被操控在電壓10 Vpp和100 kHz ~ 1 MkHz的頻率範圍之下。 許多重要的實驗參數被探討,包括光源的照度、非結晶型矽的光電效能、晶片溫度、細胞濃度、細胞死活。 這項新穎的技術能促進基礎細胞生物學的研究和生物科技的發展。
Single cell microarrays is a potential tool for cellular assay. It has an advantage of high throughput screening and promotes the study at the single cell level. This research proposed a novel device and methodology to pattern single cell microarrays. Structural DEP force and image-based DEP force were produced to control the spatial distribution of cells on the chip. Microwell arrays made by dielectric material were as physical barriers for enhancement of cell immobilization. Cells can immobilize well against the hydrodynamic drag force by using dielectric microstructures.
The concept of DEP energy wells was used to explain the distribution of single cell microarrays for the first time. Cells which suspended in the medium were located at unstable energy state and moved toward stable energy state. Finally, cells could stay stably in the bottom edge of the microwells owing to the lowest energy positions.
Using this new approach, single cell occupancy was enhanced to 45%±1.5% than only 28%±2.0% by gravitational force in lower cell seeding density. In higher cell seeding density, single cell occupancy was enhanced to 72%±2.3% than 35%±1.9% by naturally gravitational sedimentation. The maximum matrix of single cell microarrays will be close to 100*100 under proficient handling. There was a possible optimized cell seeding density for this research in the range from 7.3×10^7 to 1.5×10^8 (cells/mL).
Saccharomyces cerevisiae (yeast) cell was used for the model in this research. Cells were manipulated under 10 Vpp at 100 kHz ~ 1 MkHz in 5 uS/cm artificial buffer solution. Many important parameters were characterized in the experiment including illumination of light source, photoconductive performance of amorphous silicon, chip temperature, cell seeding density and cell viability. This novel technique would promote the study of basic cell biology and biotechnology.
[1]R. M. Johann “Cell Trapping in Microfluidic Chips” Analytical and Bioanalytical Chemistry, Vol.385, pp.408-412, 2006.
[2]I. Inoue, Y. Wakamoto, H. Moriguchi, K. Okano and K. Yasuda “On-Chip Culture System for Observation of Isolated Individual Cells” Lab on a Chip, Vol.1, pp.50-55, 2001.
[3]H. Andersson and A. van den Berg “Microtechnologies and Nanotechnologies for Single-Cell Analysis” Current Opinion in Biotechnology, Vol.15, pp.44-49, 2004.
[4]”微機電系統技術與應用” 國科會精密儀器發展中心,第十三章,2003.
[5]D. A. Dunn and I. Feygin “Challenges and Solutions to Ultra-High-Throughput Screening Assay Miniaturization: Submicroliter Fluid Handling” Drug Discovery Today (DDT), Vol.5, pp.s84-s91, 2000.
[6]M. E. Lidstrom and D. R. Meldrum “Life-on-a-Chip” Nature Reviews Microbiology, Vol.1, pp.158-164, 2003.
[7]呂衍昇、葉哲良 “即時可調變式影像介電泳運用於操縱細胞與粒子” 國立清華大學碩士論文, 2005.
[8]D. N. Howbrook, A. M. van der Valk, M. C. O’Shaughnessy, D. K. Sarker, S. C. Baker and A. W. Lloyd “Developments in Microarray Technologies” Drug Discovery Today (DDT), Vol.8, pp.642-651, 2003.
[9]O. E. Beske and S. Goldbard “High-throughput Cell Analysis Using Multiplexed Array Technologies” Drug Discovery Today (DDT), Vol.7, pp.S131-S135, 2002.
[10]J. W. Parce, J. C. Owicki, K. M. Kercso, G. B. Sigal, H. G. Wada, V. C. Muir, L. J. Bousse, K. L. Ross, B. I. Sikic and H. M. McConnell “Detection of Cell-Affecting Agents with a Silicon Biosensor” Science, Vol.246, pp.243-247, 1989.
[11]V. I. Chin, P. Taupin, S. Sanga, J. Scheel, F. H. Gage and S. N. Bhatia “Microfabricated Platform for Studying Stem Cell Fates” Biotechnology and Bioengineering, Vol.88, pp.399-415, 2004.
[12]J. R. Retting and A. Folch “Large-scale Single-Cell Trapping and Imaging Using Microwell Arrays” Analytical Chemistry, Vol.77, pp.5628-5634, 2005.
[13]E. Ostuni, C. S. Chen, D. E. Ingber and G. M. Whitesides “Selective Deposition of Proteins and Cells in Arrays of Microwells” Langmuir, Vol.17, pp.2828-2834, 2001.
[14]C. M. Nelson, S. Raghavan, J. L. Tan and C. S. Chen “Degradation of Micropatterned Surfaces by Cell-Dependent and -Independent Processes” Langmuir, Vol.19, pp.1493-1499, 2003.
[15]S. Rozhok, C. K. F. Shen, P. L. H. Littler, Z. Fan, C. Liu, C. A. Mirkin and R. C. Holz “Methods for Fabricating Microarrays of Motile Bacteria” Small, Vol.4, pp.445-451, 2005.
[16]A. Revzin, R. G. Tompkins and M. Toner “Surface Engineering with Poly(ethylene glycol) Photolithography to Create High-Density Cell Arrays on Glass” Langmuir, Vol.19, pp.9855-9862, 2003.
[17]W. G. Koh, A. Revzin, A. Simonian, T. Reeves and M. Pishko “Control of Mammalian Cell and Bacteria Adhesion on Substrates Micropatterned with Poly(ethylene glycol) Hydrogels” Biomedical Microdevices, Vol.5, pp.11-19, 2003.
[18]I. Biran and D. R. Walt “Optical Imaging Fiber-Based Single Live Cell Arrays: A High-Density Cell Assay Platform” Analytical Chemistry, Vol.74, pp.3046-3054, 2002.
[19]B. G. Kim, K. S. Yun and E. Yoon “Active Position Control of Single Cell/Microbead in a Micro-Well Array Chip by Dielectrophoresis” The 18th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2005), pp.702-705, 2005.
[20]M. Tanase, E. J. Felton, D. S. Gary, A. Hultgren, C. S. Chen and D. H. Reich “Assembly of Multicellular Constructs and Microarrays of Cells Using Magnetic Nanowires” Lab on a Chip, Vol.5, pp.598-605, 2005.
[21]M. Frenea, S. P. Faure, B. Le Pioufle, Ph. Coquet and H. Fujita “Positioning Living Cells on A High-Density Electrode Array by Negative Dielectrophoresis” Materials Science and Engineering C, Vol.23, pp.597-603, 2003.
[22]D. S. Gary, J. L. Tan, J. Voldman and C. S. Chen “Dielectrophoretic Registration of Living Cells to A Microelectrode Array” Biosensors and Bioelectronics, Vol.19, pp.1765-1774, 2004.
[23]B. M. Taff and J. Voldman “A Scalable Addressable Positive-Dielectrophoretic Cell-Sorting Array” Analytical Chemistry, Vol.77, pp.7976-7983, 2005.
[24]H. A. Pohl “The Motion and Precipitation of Suspensoids in Divergent Electric Fields” Journal of Applied Physics, Vol.22, pp.869-871, 1951.
[25]H. A. Pohl “Dielectrophoresis : The Behavior of Neutral Matter in Nonuniform Electric Field” Cambridge University Press, 1978.
[26]T. Muller, A. Pfennig, P. Klein, G. Gradl, M. Jager and T. Schnelle “The Potential of Dielectrophoresis for Single-Cell Experiments” IEEE Engineering in Medicine and Biology Magazine, Vol.22, pp.51-61, 2003.
[27]R. Pethig and G. H. Markx “Applications of Dielectrophoresis in Biotechnology” TIBTECH, Vol.15, pp.426-432, 1997.
[28]U. Zimmermann and G. A. Neil “Electromanipulation of Cells” CRC Press, Chap.5, 1995.
[29]M. P. Hughes “Nanoelectromechanics in Engineering and Biology” CRC Press, 2003.
[30]B. H. Lapizco-Encinas, B. A. Simmons, E. B. Cummings and Y. Fintschenko “Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in An Array of Insulators” Analytical Chemistry, Vol.76, pp.1571-1579, 2004.
[31]B. A. Simmons, G. J. McGraw, R. V. Davalos, G. J. Fiechtner, Y. Fintschenko and E. B. Cummings “The Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators” MRS Bulletin, Vol.31, pp.120-124, 2006.
[32]P. Y. Chiou, Z. Chang and M. C. Wu “A Novel Optoelectronic Tweezer Using Light Induceed Dielectrophoresis” IEEE/LEOS International Conference on Optical MEMS, pp.8-9, 2003.
[33]P. Y. Chiou, A. T. Ohta and M. C. Wu “Massively Parallel Manipulation of Single Cells and Microparticles Using Optical Images” Nature, Vol.436, pp.370-372, 2005.
[34]Y. P. Huang, Y. S. Lu, Y. H. Chang, J. A. Yeh and C. Lee “ Continuous Cell Sorting and Interactive Cell Handling on Channel-less Chips using Image Dielectrophoresis” The 13th International Conference on Solid-State Sensor, Actuators and Microsystems (Transducers'05), pp.1696-1699, 2005.
[35]粘正勳、邱聞鋒 “介電泳動-承先啟後的奈米操縱術” 物理雙月刊, Vol.23, pp.491-497, 2004.
[36]M. J. Madou “Fundamental of Microfabrication : The Science of Miniaturization” CRC Press, Second Edition, Chap.9, 2001.
[37]A. Rosenthal, B. M. Taff and J. Voldman “Quantitative Modeling of Dielectrophoretic Traps” Lab on a Chip, Vol.6, pp.508-515, 2006.
[38]http://www.rle.mit.edu/
[39]http://www.intellisensesoftware.com/
[40]梁元立、葉哲良 “光學介電泳驅動細胞旋轉” 國立清華大學碩士論文, 2006.
[41]H. Li, Y. Zheng, D. Akin and R. Bashir “Characterization and Modeling of a Microfluidic Dielectrophoresis Filter for Biological Species” Journal of MicroElectroMechanical Systems, Vol.14, pp.103-112, 2005.
[42]A. Rosenthal and J. Voldman “Dielectrophoretic Traps for Single-Particle Patterning” Biophysical Journal, Vol.88, pp.2193-2205, 2005.
[43]X. B. Wang, Y. Huang, J. P. H. Burt, G. H. Markx and R. Pethig “Selective Dielectrophoretic Confinement of Bioparticles in Potential Energy Wells” Journal of Physics D: Applied Physics, Vol.26, pp.1278-1285, 1993.
[44] J. Y. Huang, Y. S. Lu and J. A. Yeh “Self-Assembled High NA Microball Lens Arrays” The 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2006), pp.826-829, 2006.
[45]D. J. Griffiths “Introduction to Electrodynamics” Prentice Hall, 3rd, Chap.2, 1999.
[46]P. Y. Chiou, H. Moon, H. Toshiyoshi, C. J. Kim and M. C. Wu “Light Actuation of Liquid by Optoelectrowetting” Sensors and Actuators A, Vol.104, pp.222-228, 2003.
[47]P. Y. Chiou, W. Wong, J. C. Liao and M. C. Wu “Cell Addressing and Trapping Using Novel Optoelectronic Tweezers” The 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2004), pp.21-24, 2004.
[48]Y. S. Lu, Y. P. Huang, J. A. Yeh, C. Lee and Y. H. Chang “Controllability of Non-contact Cell Manipulation by Image Dielectrophoresis (iDEP)” Optical and Quantum Electronics, Vol.37, pp.1385-1395, 2005.
[49]G. M. Walker, H. C. Zeringue and D. J. Beebe “Microenviroment Design Considerations for Cellular Scale Studies” Lab on a Chip, Vol.4, pp.91-97, 2004.
[50]H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky and J. Darnell “Molecular Cell Biology” W. H. Freeman and Company, 5th, Chap.5, 2003.
[51]H. Lodish, A. Berk, P. Matsudaira, C. A. Kaiser, M. Krieger, M. P. Scott, S. L. Zipursky and J. Darnell “Molecular Cell Biology” W. H. Freeman and Company, 5th, Chap.7, 2003.
[52]K. Asami, T. Hanai and N. Koizumi “Dielectric Properties of Yeast Cells” The Journal of Membrane Biology, Vol.28, pp.169-180, 1976.
[53]G. Fuhr, H. Glasser, T. Muller, T. Schnelle “Cell Manipulation and Cultivation under A.C. Electric Field Influence in Highly Conductive Culture Media” Biochimica et Biophysica Acta, Vol.1201, pp.353-360, 1994.
[54]S. S. Urban, P. Marilia, S. Silvan, J. Martin and R. Philippe “Temperature Measurements in Microfluidic Systems: Heat Dissipation of Negative Dielectrophoresis Barriers” Electrophoresis, Vol.26, pp.2239-2246, 2005.
[55]S. Hohmann and W. H. Mager “Yeast Stress Response” Springer, Chap.1, 2003.
[56]U. Zimmermann and G. A. Neil “Electromanipulation of Cells” CRC Press, Chap.4, 1995.
[57]陳家全、李家維、楊瑞森 “生物電子顯微鏡學” 國科會精密儀器發展中心,第六章,1989.
[58]http://www.atcc.org/
[59]S. H. Oh, S. H. Lee, S. A. Kenrick, P. S. Daugherty and H. T. Soh “Cell-Based Protein Sensor Array Using Genetically Engineered Microbes” The 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2006), pp.486-489, 2006.
[60]P. R. C. Gascoyne and J. V. Vykoukal “Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments” Proceedings of The IEEE, Vol.92, pp.22-42, 2004.
[61]L. Altomare, M. Borgatti, G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri and R. Gambari “Levitation and Movement of Human Tumor Cells Using a Printed Circuit Board Device Based on Software-Controlled Dielectrophoresis” Biotechnology and Bioengineering, Vol.82, pp.474-479, 2003.
[62]Y. Liu, E. Smela, N. M. Nelson and P. Abshire “Cell-Lab on a Chip: A CMOS-based Microsystem for Culturing and Monitoring Cells” Proceedings of the 26th Annual International Conference of the IEEE EMBS, pp.2534-2537, 2004.
[63]Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace and X. Xu “Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays” Analytical Chemistry, Vol.74, pp.3362-3371, 2004.