簡易檢索 / 詳目顯示

研究生: 周和均
Jhou, He-Jyun
論文名稱: 用於有機鹵化金屬鈣鈦礦太陽能電池之高分子與小分子電洞傳輸層
Polymeric and Small Molecular Hole Transporting Layers for Organometallic Halide Perovskite Solar Cells
指導教授: 林皓武
Lin, Hao-Wu
口試委員: 林子超
Lin, Tzu-Chau
周鶴修
Chou, Ho-Hsiu
呂宥蓉
Lu, Yu-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 鈣鈦礦太陽能電池有機高分子有機小分子鈣鈦礦太陽能電池電洞傳輸層
外文關鍵詞: organometallic halide perovskite, solar cells, perovskite solar cells, hole transporting layers, conductive dopant, photovoltaics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究應用於有機鹵化金屬鈣鈦礦太陽能電池之高分子與小分子電洞傳輸層對元件表現的影響。
    第一章,簡介太陽能電池的發展歷史並回顧有機鹵化金屬鈣鈦礦太陽能電池的研究發展與現況。
    第二章,概述有機鹵化金屬鈣鈦礦太陽能電池之工作原理、光電特性、元件結構、材料分析、元件製備與量測。
    第三章,我藉由改變混合poly(bis-4-butylphenyl-N,N-bisphenyl)benzidine (poly-TPD)及poly(-3,4-ethylenedioxythiophene)-complex (PEDOT:complex)之比例作為可調變功函數之電洞傳輸層,搭配化學氣相沉積法 (chemical vapor deposition, CVD) 製備有機鹵化金屬鈣鈦礦太陽能電池並探討元件表現。具最佳表現的元件其短路電流密度為13.69 mA/cm2,開路電壓為0.8 V,填充因子為0.69,元件效率為7.51%。
    第四章,我使用四種不同的小分子材料作為電洞傳輸層 (DPBPSF, DTBPSF, DTPySF, DTTPSF),並量測其功函數及電洞遷移率,搭配順序型真空蒸鍍製程製備鈣鈦礦太陽能電池。另外也透過加入2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ)作為導電參雜,探討參雜前後元件之表現。其中以參雜3wt% F4TCNQ之DTBPSF之元件有最佳表現,其短路電流密度為21.53 mA/cm2,開路電壓為1.04 V,填充因子為0.782,元件效率為17.6%。


    In this thesis, I study the polymeric and small molecular hole transporting layers (HTL) for organometallic halide perovskite solar cells.
    In the first chapter, I briefly review the development of modern photovoltaics and organometallic perovskite solar cells.
    In the second chapter, the operation principles and characteristics of organometallic perovskite solar cells are described, followed by the details of device structures, materials analyses, device fabrications and characteristics measurements.
    In the third chapter, blends of poly(bis-4-butylphenyl-N,N-bisphenyl)benzidine (poly-TPD) and poly(-3,4-ethylenedioxythiophene):complex (PEDOT:complex) as work function tunable HTLs are studied. Two-step chemical vapor deposition (CVD) perovskite active layers are used in this study. The devices exhibit the highest power conversion efficiency (PCE) of 7.51 % with a short circuit current density (Jsc) of 13.69 mA/cm2, an open circuit voltage (Voc) of 0.8 V and a fill factor (F.F.) of 0.69.
    In the fourth chapter, four novel small molecules (DPBPSF, DTBPSF, DTPySF, DTTPSF) used as HTLs of organometallic halide perovskite solar cells are studied. The perovskite films are prepared by the sequential vacuum deposition and their characteristics including work functions and hole mobilities are investigated. Additionally, conductive dopant 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ) is added to improve the device performance. After the optimization of the devices, the one using 3wt% F4TCNQ doped in DTBPSF as HTL exhibits the highest PCE of 17.6%, with Jsc of 21.53 mA/cm2, Voc of 1.0 4 and F.F. of 0.782.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X Chapter1 序論 1 1-1 前言 1 1-2 太陽能電池發展簡介 2 1-2.1 第一代太陽能電池 2 1-2.2 第二代太陽能電池 3 1-2.3 第三代太陽能電池 4 1-3 有機薄膜太陽能電池發展 5 1-4 染料敏化太陽能電池發展 6 1-5 有機金屬鈣鈦礦太陽能電池發展 7 1-6 論文結構 11 Chapter2 有機鹵化金屬鈣鈦礦太陽能電池之工作原理與特性量測 12 2-1 簡介 12 2-2 太陽光光譜 12 2-3 有機鹵化金屬鈣鈦礦太陽能電池之工作原理 15 2-4 有機鹵化金屬鈣鈦礦太陽能電池之光電特性 16 2-4.1 能量轉換效率 (power conversion efficiency, PCE): 16 2-4.2 開路電壓 (open circuit voltage, Voc): 16 2-4.3 短路電流密度 (short circuit current density, Jsc): 16 2-4.4 填充因子 (fill factor, F.F.): 17 2-4.5 外部量子效率 (external quantum efficiency, E.Q.E.): 17 2-5 有機鹵化金屬鈣鈦礦太陽能電池之元件結構 19 2-5.1 依載子傳輸方向分類 19 2-5.2 依元件型態分類 19 2-6 有機鹵化金屬鈣鈦礦太陽能電池之材料分析、元件製備與元件量測 21 2-6.1 有機材料的純化 21 2-6.2 材料的光物理性質量測 21 2-6.3 元件製備方法 22 2-6.4 元件量測 22 Chapter3 功函數可調之高分子電洞傳輸層應用於鈣鈦礦太陽能電池 24 3-1 高分子電洞傳輸層之發展與簡介 24 3-2 化學氣相沉積法簡介 26 3-3 濕式可調變功函數之正結構鈣鈦礦太陽能電池電洞傳輸層 29 3-3.1 高分子材料 Poly-TPD 29 3-3.2 導電高分子材料 PEDOT:complex 29 3-3.3 可調變功函數之電洞傳輸層之製備與特性 29 3-3.4 可調變功函數之電洞傳輸層之功函數量測 30 3-4 化學氣相沉積法製備鈣鈦礦主動層 33 3-5 正結構鈣鈦礦太陽能電池元件製備 35 3-4.1 改變CVD之基板區溫度 37 3-4.2 延長CVD之反應時間 40 3-4.3 改變CVD之反應條件 43 3-6 小結 46 Chapter4 有機小分子電洞傳輸層之正結構有機鹵化金屬鈣鈦礦太陽能電池 47 4-1小分子電洞傳輸層之發展與簡介 47 4-2 電洞傳輸層中小分子參雜物之發展與簡介 49 4-3 電洞傳輸層材料DPBPSF 52 4-3.1 DPBPSF材料性質 52 4-4 電洞傳輸層材料DTBPSF 55 4-4.1 DTBPSF材料性質 55 4-4.2 以DTBPSF、DPBPSF製備正結構鈣鈦礦太陽能電池元件 55 4-5 電洞傳輸層材料DTPySF 61 4-5.1 DTPySF材料性質 61 4-7.2 以DTPySF製備正結構鈣鈦礦太陽能電池元件 61 4-6 電洞傳輸層材料DTTPSF 67 4-6.1 DTTPSF材料性質 67 4-6.2 以DTTPSF製備正結構鈣鈦礦太陽能電池元件 67 4-7 小分子導電參雜 73 4-7.1 DPBPSF參雜F4TCNQ後之性質與元件製備 73 4-7.2 DTBPSF參雜F4TCNQ後之性質與元件製備 78 4-7.3 DTPySF參雜F4TCNQ後之性質與元件製備 82 4-7.4 DTTPSF參雜F4TCNQ後之性質與元件製備 87 4-8 小結 92 Chapter 5 結論與未來展望 94 參考文獻 95

    [1] A. E. Becquerel, C. R. Acad. Sci.1839, 9, 145.
    [2] C. E. Fritts, Am. J. Sci. 1883, 26, 465.
    [3] N. R. E. Laboratory. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    [4] R. S. Ohl, United States Patent, 1948.
    [5] S. W. Glunz, R. Preu, D. Biro, Crystalline Silicon Solar Cells, Elsevier, Oxford, 2012.
    [6] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
    [7] A. Slade, V. Garboushian, "27.6% Efficient Silicon Concentrator Solar Cells for Mass Production", presented at 15th International Photovoltaic Science and Engineering Conference, 2005.
    [8] D. Antoine Descoeudres, Zachary C. Holman, Loris Barraud, IEEE J. Photovolt. 2013, 3, 83.
    [9] C. Battaglia, A. Cuevas, S. De Wolf, Energy Environ. Sci. 2016, 9, 1552.
    [10] D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 1976, 28, 671.
    [11] T. M. Hitoshi Sai, Appl. Phys. Lett. 2015, 106, 213902.
    [12] N. Abdul-Manaf, H. Salim, M. Madugu, O. Olusola, I. Dharmadasa, Energies 2015, 8, 10883.
    [13] J. S. Ward, B. Egaas, R. Noufi, M. Contreras, K. Ramanathan, C. Osterwald, K. Emery, "Cu(In,Ga)Se2 Solar Cells Measured Under Low Flux Optical Concentration", presented at IEEE 40th Photovoltaic Specialist Conference, 8-13 June 2014, 2014.
    [14] W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510.
    [15] B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, J. Am. Chem. Soc. 2015, 137, 3886.
    [16] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Nat. Energy 2016, 1, 15027.
    [17] X. Zhang, Q. Chen, H. Sun, T. Pan, G. Hu, R. Ma, J. Dou, D. Li, X. Pan, Spectrochim. Acta. A 2014, 118, 564.
    [18] W. Kong, A. Rahimi-Iman, G. Bi, X. Dai, H. Wu, J. Phys. Chem. C 2016, 120, 7606.
    [19] S. Glenis, G. Tourillon, F. Garnier, Thin Solid Films 1986, 139, 221.
    [20] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    [21] P. Peumans, S. R. Forrest, Appl. Phys. Lett. 2001, 79, 126.
    [22] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    [23] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
    [24] M. K. Nazeeruddin, E. Baranoff, M. Grätzel, Sol. Energy 2011, 85, 1172.
    [25] G. M. Hasselman, D. F. Watson, J. R. Stromberg, D. F. Bocian, D. Holten, J. S. Lindsey, G. J. Meyer, J. Phys. Chem. B 2006, 110, 25430.
    [26] B. O’regan, M. Grfitzeli, nature 1991, 353, 737.
    [27] M. K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, M. Grätzel, Helv. Chim. Acta 1990, 73, 1788.
    [28] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
    [29] M. K. Nazeeruddin, P. Pechy, M. Grätzel, Chem. Commun. 1997, 1705.
    [30] M. K. Nazeeruddin, S. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 1999, 38, 6298.
    [31] S. Ardo, G. J. Meyer, Chem. Soc. Rev. 2009, 38, 115.
    [32] P. Chen, J. H. Yum, F. D. Angelis, E. Mosconi, S. Fantacci, S.-J. Moon, R. H. Baker, J. Ko, M. K. Nazeeruddin, M. Grätzel, Nano Lett. 2009, 9, 2487.
    [33] V. M. Goldschmidt, Naturwissenschaften 1926, 14, 477.
    [34] H. D. Megaw, Nature 1945, 155, 484.
    [35] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics. 2014, 8, 506.
    [36] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [37] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 2011, 3, 4088.
    [38] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Sci. Rep. 2012, 2.
    [39] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2012, 134, 17396.
    [40] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    [41] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [42] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [43] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 2013, 25, 3727.
    [44] N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151.
    [45] N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith, Energy Environ. Sci. 2014, 7, 3061.
    [46] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray‐Weale, U. Bach, Y. B. Cheng, L. Spiccia, Angew. Chem. 2014, 126, 10056.
    [47] H.-S. Ko, J.-W. Lee, N.-G. Park, J. Mater. Chem. A 2015, 3, 8808.
    [48] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Nature 2015, 517, 476.
    [49] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, Nat. Energy 2016, 1, 15017.
    [50] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Nat. Nanotechnol. 2016, 11, 75.
    [51] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
    [52] H. Kim, K.-G. Lim, T.-W. Lee, Energy Environ. Sci. 2016, 9, 12.
    [53] W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, J. Mater. Chem. A 2015, 3, 19353.
    [54] W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian, C. Huang, Nanoscale 2016, 8, 15954.
    [55] S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang, Nano Lett. 2015, 15, 3723.
    [56] M. Jung, Y. C. Kim, N. J. Jeon, W. S. Yang, J. Seo, J. H. Noh, S. Il Seok, ChemSusChem 2016, 9, 2592.
    [57] S. Seo, I. J. Park, M. Kim, S. Lee, C. Bae, H. S. Jung, N.-G. Park, J. Y. Kim, H. Shin, Nanoscale 2016, 8, 11403.
    [58] Z. Zhu, Y. Bai, T. Zhang, Z. Liu, X. Long, Z. Wei, Z. Wang, L. Zhang, J. Wang, F. Yan, S. Yang, Angew. Chem. Int. Ed. 2014, 53, 12571.
    [59] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Science 2015, 350, 944.
    [60] P.-P. Zhang, Z.-J. Zhou, D.-X. Kou, S.-X. Wu, Int. J. Photoenergy 2017, 2017, 10.
    [61] D. Zhao, M. Sexton, H.-Y. Park, G. Baure, J. C. Nino, F. So, Adv. Energy Mater. 2015, 5, 1401855.
    [62] K. Sun, P. Li, Y. Xia, J. Chang, J. Ouyang, ACS Appl. Mater. Interfaces 2015, 7, 15314.
    [63] D. Huang, T. Goh, J. Kong, Y. Zheng, S. Zhao, Z. Xu, A. D. Taylor, Nanoscale 2017, 9, 4236.
    [64] Q. Wang, C.-C. Chueh, M. Eslamian, A. K. Y. Jen, ACS Appl. Mater. Interfaces 2016, 8, 32068.
    [65] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, S. I. Seok, Nat Photon 2013, 7, 486.
    [66] B.-S. Kim, T.-M. Kim, M.-S. Choi, H.-S. Shim, J.-J. Kim, Org. Electron. 2015, 17, 102.
    [67] H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, Adv. Funct. Mater. 2009, 19, 3948.
    [68] F. Wang, H. Yu, H. Xu, N. Zhao, Adv. Funct. Mater. 2015, 25, 1120.
    [69] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat Nano 2014, 9, 927.
    [70] W. Li, J. Fan, J. Li, Y. Mai, L. Wang, J. Am. Chem. Soc. 2015, 137, 10399.
    [71] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Sci. Adv. 2016, 2.
    [72] C.-G. Wu, C.-H. Chiang, Z.-L. Tseng, M. K. Nazeeruddin, A. Hagfeldt, M. Gratzel, Energy Environ. Sci. 2015, 8, 2725.
    [73] W. Yan, Y. Li, Y. Li, S. Ye, Z. Liu, S. Wang, Z. Bian, C. Huang, Nano Res. 2015, 8, 2474.
    [74] F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, W. Li, Nanoscale 2015, 7, 9427.
    [75] Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Adv. Mater. 2016, 28.
    [76] C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H. J. Bolink, Energy Environ. Sci. 2016, 9, 3456.
    [77] C. Bert, B. Linny, D. D. Christopher, D. H. Jan, M. Jean, B. Hans‐Gerd, Adv. Mater. 2014, 26, 2041.
    [78] Y. Guo, C. Liu, K. Inoue, K. Harano, H. Tanaka, E. Nakamura, J. Mater. Chem. A 2014, 2, 13827.
    [79] H. S. Tung, L. Xinfeng, Z. Qing, G. David, S. T. Chien, X. Qihua, Adv. Opt. Mater. 2014, 2, 838.
    [80] M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, Y. Qi, J. Mater. Chem. A 2014, 2, 18742.
    [81] M. R. Leyden, M. V. Lee, S. R. Raga, Y. Qi, J. Mater. Chem. A 2015, 3, 16097.
    [82] P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, Y. Lu, ACS Appl. Mater. Interfaces 2015, 7, 2708.
    [83] Q. Shen, A. Ng, Z. Ren, H. C. Gokkaya, A. B. Djurišić, J. A. Zapien, C. Surya, ACS Appl. Mater. Interfaces 2018, 10, 371.
    [84] X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 2014, 515, 96.
    [85] W. H. Nguyen, C. D. Bailie, E. L. Unger, M. D. McGehee, J. Am. Chem. Soc. 2014, 136, 10996.
    [86] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, Science 2015, 348, 1234.
    [87] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M. K. Nazeeruddin, Nat. Energy 2016, 1, 15017.
    [88] S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, H.-W. Lin, Adv. Mater. 2016, 28, 7013.
    [89] H. Choi, J. H. Heo, S. Ha, B. W. Kwon, S. P. Yoon, J. Han, W.-S. Kim, S. H. Im, J. Kim, Chem. Eng. J. 2017, 310, 179.
    [90] W. Yang, Y. Yao, C.-Q. Wu, J. Appl. Phys 2015, 117, 095502.
    [91] Y. Li, B. Ding, Q.-Q. Chu, G.-J. Yang, M. Wang, C.-X. Li, C.-J. Li, Sci. Rep. 2017, 7, 46141.
    [92] L. Calió, S. Kazim, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 2016, 55, 14522.
    [93] K. Naito, Chem. Mater. 1994, 6, 2343.
    [94] K. Naito, A. Miura, J. Phys. Chem. 1993, 97, 6240.
    [95] M. Neophytou, J. Griffiths, J. Fraser, M. Kirkus, H. Chen, C. B. Nielsen, I. McCulloch, J. Mater. Chem. C 2017, 5, 4940.
    [96] W.-L. Tsai, W.-H. Lee, C.-Y. Chen, S.-Y. Hsiao, Y.-J. Shiau, B.-W. Hsu, Y.-C. Lee, H.-W. Lin, Nano Energy 2017, 41, 681.
    [97] I. Salzmann, G. Heimel, M. Oehzelt, S. Winkler, N. Koch, Acc. Chem. Res. 2016, 49, 370.
    [98] F. Huang, A. G. MacDiarmid, B. R. Hsieh, Appl. Phys. Lett. 1997, 71, 2415.
    [99] D. B. Romero, M. Schaer, L. Zuppiroli, B. Cesar, B. François, Appl. Phys. Lett. 1995, 67, 1659.
    [100] C. Ganzorig, M. Fujihira, Appl. Phys. Lett. 2000, 77, 4211.
    [101] D.-S. Leem, H.-D. Park, J.-W. Kang, J.-H. Lee, J. W. Kim, J.-J. Kim, Appl. Phys. Lett. 2007, 91, 011113.
    [102] C.-C. Chang, M.-T. Hsieh, J.-F. Chen, S.-W. Hwang, C. H. Chen, Appl. Phys. Lett. 2006, 89, 253504.
    [103] A. E. F., V. A., E. S., E. W., P. P., N. D., K. N., Adv. Mater. 2007, 19, 3257.
    [104] J. E. Cochran, M. J. N. Junk, A. M. Glaudell, P. L. Miller, J. S. Cowart, M. F. Toney, C. J. Hawker, B. F. Chmelka, M. L. Chabinyc, Macromolecules 2014, 47, 6836.
    [105] D. Liu, Y. Li, J. Yuan, Q. Hong, G. Shi, D. Yuan, J. Wei, C. Huang, J. Tang, M.-K. Fung, J. Mater. Chem. A 2017, 5, 5701.
    [106] Y. Karpov, T. Erdmann, M. Stamm, U. Lappan, O. Guskova, M. Malanin, I. Raguzin, T. Beryozkina, V. Bakulev, F. Günther, S. Gemming, G. Seifert, M. Hambsch, S. Mannsfeld, B. Voit, A. Kiriy, Macromolecules 2017, 50, 914.
    [107] J. J. Woong, C. Chu‐Chen, J. A. K.‐Y., Adv. Mater. 2015, 27, 7874.

    QR CODE