研究生: |
陳威助 Chen, Wei-Chu |
---|---|
論文名稱: |
利用物理模型引導的類神經網路求解並聯式機構之逆向動力學 Solving Inverse Dynamics of 3-UPU Parallel Kinematic Manipulator with Physics-Guided Neural Network |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
蕭德瑛
Shiau, De-Ying 張禎元 Chang, Jen-Yuan 吳育仁 Wu, Yu-Ren 邱昱仁 Chiu, Yu-Ren |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 141 |
中文關鍵詞: | 並聯式機構 、動力學 、機器學習 、類神經網路 、物理模型 |
外文關鍵詞: | Parallel kinematic manipulator, Dynamics, Machine Learning, Neural network, Physical model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
並聯式機構的解析動力學因為其高度非線性與機構間的耦合性,使得解析動力學的求解較為困難,並且解析模型仍需線性化以降低計算的複雜度,方能放入運動控制當中。此外,相較於動力學,並聯式機構的運動學解析模型通常較容易求解。因此,本文將以並聯式機構的運動學模型來引導訓練逆向動力學的類神經網路,並運用類神經網路非線性擬合與計算快速的特性,來彌補解析模型的在求解與運算上的劣勢。本文首先會介紹本文所使用的3-UPU並聯式機構構型,並定義相關參數後進行運動學推導以利於後續模型的建立。而後透過多組運動學方程式與CAD檔建立Simulink的剛體動力學模型,並利用Simscape計算出機構的逆向動力學數值解。此外,為了確保資料的正確性,本文亦利用Adams建立相同的模型交叉驗證其數值解。透過定義多組週期函數,得到端效器在工作空間中涵蓋不同速度、加速度及馬達出力的點資料,並作為數據驅動與物理引導的類神經網路模型之訓練資料。除了理想的模擬資料外,本文利用雷射追蹤儀安裝位置與其感測器的線性重複精度訂定噪音資料,並做為強健性測試使用。最終,在同樣的網路結構下,透過對逆向運動學引導之模型與數據驅動模型的預測結果比較,證實了在加入物理模型後的機器學習模型在內差能力、外插能力、通用能力、及強健性皆優於一般的數據驅動模型。此外,論文中所提及的相關程式碼與資料集將開源於個人的GitHub頁面[1]。
The analytical derivation of dynamic model for parallel kinematic manipulators can be challenging owing to high nonlinearity and strong coupling between each joint. Besides, the analytical dynamic model requires linearization before being implemented to control scheme which certainly losses its nonlinearity. In addition, compared to dynamic model, the analytical kinematic model is relatively simple to be derived. Thus, by utilizing the nonlinear fitting and fast computational characteristics of neural network, this study proposed a novel machine learning model, termed Physics-Guided Neural Network, in order to guide the inverse dynamic model training process with kinematic model. This study first introduces a 3-UPU PKM and defines the parameters related to the derivation of kinematics, so that the Simulink model is established by several blocks including inverse kinematics, CAD model, and data post-processing. Then, a spiral trajectory is performed to verify the correctness of the model. With the aid of Simulink Simscape, the inverse dynamics data of PKM is generated. Therefore, multiple periodic trajectory data that contains different velocity, and acceleration of the end-effector is imported to Python IDE in order to train inverse dynamic model with data-driven neural network (DDNN) and physics-guided neural network (PGNN). Different from DDNN, PGNN uses physics-based loss functions in the learning objective of neural network to ensure the model prediction is guided by physics model. In addition, this study utilizes the mounting position of laser tracker and the linear repeatability of its sensor to generate noise data with physics consistency. Through the analysis in different aspects, kinematics model guided neural network is proved to have better performance on convergence, interpolation capability, extrapolation capability, generalization capability, and robustness than traditional data-driven neural network. All the codes and datasets used in this study have been made available on this link https://github.com/PhoniExZoe/PGNN.
[1] PhoniExZoe/PGNN: Solving Inverse Dynamics of 3-UPU Parallel Kinematic Mechanism with Physics-Guided Neural Network. Retrived from: https://github.com/PhoniExZoe/PGNN
[2] 工具機與零組件雜誌,全球工具機產銷報告。
檢自:http://www.maonline.com.tw/market_inside.php?i=346
[3] 中時新聞網,2021年台灣工具機出口年成長近三成。
檢自:http://www.maonline.com.tw/market_inside.php?i=346
[4] M. Weck and D. Staimer (2002). Parallel Kinematic Machine Tools – Current State and Future Potentials. CIRP Ann., vol. 51, no. 2, pp. 671–683.
[5] X. Chen, X. J. Liu, F. G. Xie, and T. Sun (2014). A Comparison Study on Motion/Force Transmissibility of Two Typical 3-DOF Parallel Manipulators: The Sprint Z3 and A3 Tool Heads. Int. J. Adv. Robot. Syst., vol. 11, no. 1.
[6] WARSONCO, High-Speed Low Cost Delta Robot DJ Serial. Retrived from: https://www.warsoncorobot.com/delta-robot/229.html
[7] 天津揚天科技有限公司。檢自:http://www.chnrobot.net/txtPro2.aspx?dataid=34&cateid=80&bigcateid=0
[8] Exechon, Exechon Xmini. Retrived from: https://exechon.com/xmini/
[9] starrag, ECOSPEED F 2040/2540. Retrived from: https://www.starrag.com/en-us/machine/ecospeed-f-20402540/133
[10] P. Timisoara, Z. Pandilov, V. Dukovski, and S. I. Kiriil Metodij (2014). Comparison of the characteristics between serial and parallel robots.
[11] H. Hajimirzaalian, K. Rezvani, H. Faraji, and M. Hossein (2017). Solving the forward kinematics problem in parallel manipulators using neural network. ACM Int. Conf. Proceeding Ser., pp. 23–29.
[12] V. Gough and S. Whitehall (1962). Universal tyre test machine.
[13] D. Stewart (2016). A Platform with Six Degrees of Freedom.
[14] A. M. Turing (1950). Computing Machinery And Intelligence. Mind, vol. LIX, no. 236, pp. 433–460
[15] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag., vol. 27, no. 4, pp. 12–12.
[16] F. Rosenblatt (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., vol. 65, no. 6, pp. 386–408.
[17] M. Minsky and S. A. Papaert (1969). Peceptrons: An Introduction to Computational Geometry.
[18] B. G. Buchanan and E. A. Feigenbaum (1978). Dendral and meta-dendral: Their applications dimension. Artif. Intell., vol. 11, no. 1–2, pp. 5–24.
[19] J. J. Hopfield (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., vol. 79, no. 8, pp. 2554–2558.
[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams (1986). Learning representations by back-propagating errors. Nat. 1986 3236088, vol. 323, no. 6088, pp. 533–536.
[21] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski (1985). A learning algorithm for boltzmann machines. Cogn. Sci., vol. 9, no. 1, pp. 147–169.
[22] G. E. Hinton and R. R. Salakhutdinov (2006). Reducing the dimensionality of data with neural networks. Science, vol. 313, no. 5786, pp. 504–507
[23] S. Chen, S. A. Billings, and P. M. Grant (1990). Non-linear system identification using neural networks. International Journal of Control, Vol. 51(6), 1191–1214.
[24] J. Sjöberg, H. Hjalmarsson, and L. Ljung (1994). Neural Networks in System Identification. IFAC Proc., Vol. 27(8), 359–382.
[25] L. X. Wei, H. R. Wang, and Y. Li (2003). A new solution for inverse kinematics of manipulator based on neural network. Int. Conf. Mach. Learn. Cybern., Vol. 2, 1201–1203
[26] R. Köker, C. Öz, T. Çakar, and H. Ekiz (2004). A study of neural network based inverse kinematics solution for a three-joint robot. Rob. Auton. Syst., Vol. 49(3), 227–234.
[27] R. Köker (2013). A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inf. Sci. (Ny)., Vol. 222, 528–543.
[28] L. Moldovan, H. S. Grif, and A. Gligor (2016). ANN based inverse dynamic model of the 6-PGK parallel robot manipulator. Int. J. Comput. Commun. Control, Vol. 11(1), 90–104
[29] K. Hitzler, F. Meier, S. Schaal, and T. Asfour (2019). Learning and Adaptation of Inverse Dynamics Models: A Comparison. 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 491-498.
[30] N. Yilmaz, J. Y. Wu, P. Kazanzides, and U. Tumerdem (2020). Neural Network based Inverse Dynamics Identification and External Force Estimation on the da Vinci Research Kit. Proc. - IEEE Int. Conf. Robot. Autom., 1387-1393.
[31] A. Daw, A. Karpatne, W. D. Watkins, J. S. Read, and V. Kumar (2017). Physics-guided Neural Networks (PGNN): An Application in Lake Temperature Modeling. Knowledge-Guided Mach. Learn., 353-372.
[32] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach, and V. Kumar (2019). Physics Guided RNNs for Modeling Dynamical Systems: A Case Study in Simulating Lake Temperature Profiles. SIAM Int. Conf. Data Mining, 558-566.
[33] N. Muralidhar, J. Bu, Z. Cao, L. He, N. Ramakrishnan, D. Tafti, and A. Karpatne (2019). Physics-guided Design and Learning of Neural Networks for Predicting Drag Force on Particle Suspensions in Moving Fluids.
[34] J. Ayensa-Jiménez, M. H. Doweidar, J. A. Sanz-Herrera, and M. Doblaré (2021). Prediction and identification of physical systems by means of Physically-Guided Neural Networks with meaningful internal layers. Comput. Methods Appl. Mech. Eng. Vol. 381, 113816.
[35] N. Bhutani, G. P. Rangaiah, and A. K. Ray (2006). First-principles, data-based, and hybrid modeling and optimization of an industrial hydrocracking unit. Ind. Eng. Chem. Res., Vol. 45(23), 7807-7816.
[36] 鄭兆鈞 (2021)。以機器學習輔助應用於液靜壓雙向墊系統之自補償式節流器設計。國立清華大學動力機械工程學系碩士論文,新竹市。
[37] 陳晏菘(2020)。利用螺旋理論探討具變化連桿長度3-UPU型並聯式機構之剛性分析。國立清華大學動力機械工程學系碩士論文,新竹市。
[38] 曾勇志(2020)。3-PUU型並聯式機構應用於五軸加工機之參數優化與剛性分析。國立清華大學動力機械工程學系碩士論文,新竹市。
[39] 楊培弘(2021)。考量關節撓性於具變化連桿長度3-UPU型變連式機構之動態響應。國立清華大學動力機械工程學系碩士論文,新竹市。
[40] 向志軒(2021)。具變化連桿長度3-UPU型並聯式機構之平衡設計與最佳化。國立清華大學動力機械工程學系碩士論文,新竹市。
[41] 李怡萱(2022)。考量接頭及連桿撓性之3-UPU型並聯式機構空間剛性分析。國立清華大學動力機械工程學系碩士論文,新竹市。
[42] 黃天虹(2021)。具變化連桿長度3-UPU型並聯式機構之誤差模型與敏感度分析。國立清華大學動力機械工程學系碩士論文,新竹市。
[43] 李宜家(2022)。應用機器學習進行3-UPU型並聯式機構之最佳化。國立清華大學動力機械工程學系碩士論文,新竹市。
[44] A. S. Polydoros, L. Nalpantidis, and V. Krüger (2015). Real-time Deep Learning of Robotic Manipulator Inverse Dynamics.
[45] 武國順(2018)。3-UPU并联机构动力学研究。黑龙江大学机电工程学院碩士論文。
[46] R. Rai and C.K. Sahu (2020). Driven by Data or Derived Through Physics? A Review of Hybrid Physics Guided Machine Learning Techniques with Cyber-Physical System (CPS) Focus. IEEE Access, Vol. 8, 71050-71073.
[47] T. Yu and H. Zhu (2020). Hyper-Parameter Optimization: A Review of Algorithms and Applications.
[48] 劉曦宏(2019)。并聯機構多體系統的模型預測運動控制研究。沈陽建筑大學机械工程學系碩士論文。
[49] E. Otten (2003). Inverse and forward dynamics: models of multi-body systems. Philos. Trans. R. Soc. B Biol. Sci., Vol. 358(1437), 1493.
[50] 许永生(2011)。闭环多体系统动力学递推建模及其求解方法。大连理工大学动力学与控制博士論文。
[51] V. Nair and G. E. Hinton (2010). Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10), 807-814.
[52] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia (2000). Incorporating Second-Order Functional Knowledge for Better Option Pricing. Proceedings of the 13th International Conference on Neural Information Processing Systems, 451–457.
[53] M. Nielsen (2016). Neural networks and deep learning. Retrived from: http://neuralnetworksanddeeplearning.com/
[54] C. Bircanoglu and N. Arica (2018). A comparison of activation functions in artificial neural networks. 26th IEEE Signal Process. Commun. Appl. Conf. SIU, 1–4.
[55] D. P. Kingma and J. Ba (2014). Adam: A Method for Stochastic Optimization.
[56] J. Bergstra and Y. Bengio (2012). Random Search for Hyper-Parameter Optimization.
[57] S. Huang, Kaggle – Understanding Pytorch hooks. Retrieved from: https://www.kaggle.com/code/sironghuang/understanding-pytorch-hooks/notebook
[58] Import pretrained ONNX network – MATLAB importONNXNetwork. Retrieved from: https://www.mathworks.com/help/deeplearning/ref/importonnxnetwork.html#mw_3d5b9392-4d4f-4c1a-9d56-9a3902549106
[59] J. F. He, H. Z. Jiang, D. C. Cong, Z. M. Ye, and J. W. Han (2007). A Survey on Control of Parallel Manipulator. Key Eng. Mater., Vol. 339, 307-313.
[60] M. Honegger, R. Brega, and G. Schweitzer (2000). Application of a Nonlinear Adaptive Controller to a 6 dof Parallel Manipulator.