研究生: |
吳清茂 Ching-Mao Wu |
---|---|
論文名稱: |
DNA-脂質錯合體自組裝結構之研究 Self-Assembled Architecture of DNA-Lipid Complexes |
指導教授: |
陳信龍
Hsin-Lung Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 121 |
中文關鍵詞: | 基因治療 、DNA/陽離子微脂粒錯合體 、DC-Chol 、DOPC 、凝結 、脂質 |
外文關鍵詞: | gene therapy, DNA/cationic liposome complexes, DC-Chol, DOPC, condensation, lipids |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Polyanionic DNA can bind electrostatically with cationic liposomes (CLs) to form the complex exhibiting rich self-assembled structures at various length scales. This class of bioassembly has been considered as a nonviral gene delivery system for gene therapy or as a template for nanostructure construction. Understanding the self-assembly of DNA/CL complexes is crucial both for building the detailed nucleic acid delivery mechanism and also for application of this class of materials as nanostructural templates. This dissertation investigates the self-assemblies of the bioassemblies of DNA with (1) a cationic lipid, cholesteryl 3β-N-((dimethylamino)et-
hyl)carbamate (DC-Chol), (2) a zwitterionic lipid, 1,2-di(cis-9-octadecenoyl)-sn-glyc-
ero-3-phosphocholine (DOPC), and (3) with both DC-Chol and DOPC.
The self-assembled structure of DNA-DC-Chol complexes in excess water was first reported. Neat DC-Chol self-assembled into cylindrical micelles in aqueous media. These micelles aggregated and fused into multilamellar condensates or vesicles upon complexation with DNA, and DNA chains confined between the lipid bilayers formed closely packed arrays irrespective of overall lipid-to-base pair molar ratio. The complexation was found to be a highly cooperative process, where the complexes with nearly 1:1 stoichiometry were formed even when DNA was in excess of DC-Chol in terms of the overall ionic charge. As DC-Chol became in excess, the unbound lipid did not fully macrophase separate from the stoichiometric complex but segregated to form domains coexisting with the bound lipid domains in the lamellae. The presence of these unbound lipid domains reduced the persistence length of the membrane and consequently induced topological transformation of the multilamellar phase from platelike lamellae to circular lamellae observed by TEM at higher DC-Chol composition.
The self-assembly of DNA-DC-Chol complexes in the bulk state (i.e., solid state) has been investigated by SAXS. Two multilamellar phases, LI and LII, characterized by distinct states of lipid stacking and DNA conformation were observed. LII phase, formed when the lipid was in excess of DNA in terms of overall ionic charge, composed of B-DNA confined between the bilayers with the lipid tails aligning normal to the lamellar interface. When DNA are in excess, LI phase, in which the A-DNA bound with the titled lipid chains adopts A-form conformation, was favored as it offered more economical binding between these two components.
The aggregation of a zwitterionic liposome composed of DOPC induced by DNA without the presence of multivalent salt has been revealed. Our results demonstrate that only a small fraction (< 10%) of DNA can bind electrostatically with a portion of the liposomes. Such a low degree of binding however induces significant aggregation of these oligolamellar liposomes to yield large multilamellar particles in which the number of hydrophilic/hydrophobic layers along the lamellar stacking direction becomes sufficiently large to yield multiple diffraction peaks in the small angle X-ray scattering (SAXS) profile. Addition of monovalent salt such as NaCl tends to disrupt the multilamellar structure.
Finally, a multilamellar DNA-DC-Chol-DOPC complex was adopted to study the effect of divalent metal ions on the packing density of DNA condensed on the surfaces of the rigid DC-Chol/DOPC membrane. This study is distinguished from the previous one demonstrating that divalent metal ions can induce further condensation of DNA lying on the surfaces of fluid cationic membranes in that the membrane system adopted here is a rigid one. Our results demonstrate that the divalent cations, Ca2+ and Ni2+, only exerted an electrostatic screening effect between DNA but did not induce collapse transition of the DNA into a condensed state.
Polyanionic DNA can bind electrostatically with cationic liposomes (CLs) to form the complex exhibiting rich self-assembled structures at various length scales. This class of bioassembly has been considered as a nonviral gene delivery system for gene therapy or as a template for nanostructure construction. Understanding the self-assembly of DNA/CL complexes is crucial both for building the detailed nucleic acid delivery mechanism and also for application of this class of materials as nanostructural templates. This dissertation investigates the self-assemblies of the bioassemblies of DNA with (1) a cationic lipid, cholesteryl 3β-N-((dimethylamino)et-
hyl)carbamate (DC-Chol), (2) a zwitterionic lipid, 1,2-di(cis-9-octadecenoyl)-sn-glyc-
ero-3-phosphocholine (DOPC), and (3) with both DC-Chol and DOPC.
The self-assembled structure of DNA-DC-Chol complexes in excess water was first reported. Neat DC-Chol self-assembled into cylindrical micelles in aqueous media. These micelles aggregated and fused into multilamellar condensates or vesicles upon complexation with DNA, and DNA chains confined between the lipid bilayers formed closely packed arrays irrespective of overall lipid-to-base pair molar ratio. The complexation was found to be a highly cooperative process, where the complexes with nearly 1:1 stoichiometry were formed even when DNA was in excess of DC-Chol in terms of the overall ionic charge. As DC-Chol became in excess, the unbound lipid did not fully macrophase separate from the stoichiometric complex but segregated to form domains coexisting with the bound lipid domains in the lamellae. The presence of these unbound lipid domains reduced the persistence length of the membrane and consequently induced topological transformation of the multilamellar phase from platelike lamellae to circular lamellae observed by TEM at higher DC-Chol composition.
The self-assembly of DNA-DC-Chol complexes in the bulk state (i.e., solid state) has been investigated by SAXS. Two multilamellar phases, LI and LII, characterized by distinct states of lipid stacking and DNA conformation were observed. LII phase, formed when the lipid was in excess of DNA in terms of overall ionic charge, composed of B-DNA confined between the bilayers with the lipid tails aligning normal to the lamellar interface. When DNA are in excess, LI phase, in which the A-DNA bound with the titled lipid chains adopts A-form conformation, was favored as it offered more economical binding between these two components.
The aggregation of a zwitterionic liposome composed of DOPC induced by DNA without the presence of multivalent salt has been revealed. Our results demonstrate that only a small fraction (< 10%) of DNA can bind electrostatically with a portion of the liposomes. Such a low degree of binding however induces significant aggregation of these oligolamellar liposomes to yield large multilamellar particles in which the number of hydrophilic/hydrophobic layers along the lamellar stacking direction becomes sufficiently large to yield multiple diffraction peaks in the small angle X-ray scattering (SAXS) profile. Addition of monovalent salt such as NaCl tends to disrupt the multilamellar structure.
Finally, a multilamellar DNA-DC-Chol-DOPC complex was adopted to study the effect of divalent metal ions on the packing density of DNA condensed on the surfaces of the rigid DC-Chol/DOPC membrane. This study is distinguished from the previous one demonstrating that divalent metal ions can induce further condensation of DNA lying on the surfaces of fluid cationic membranes in that the membrane system adopted here is a rigid one. Our results demonstrate that the divalent cations, Ca2+ and Ni2+, only exerted an electrostatic screening effect between DNA but did not induce collapse transition of the DNA into a condensed state.
Chapter 1
(1) Huang, L.; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy. Academic Press: New York, 1999.
(2) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221.
(3) Miller A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
(4) Chesnoy, S.; Huang, L. Annu. Rev. Biophs. Biomol. Struct. 2000, 29, 27.
(5) Amos, H. Biochem. Biophys. Res. Comm. 1961, 5, 1.
(6) Dimitriadis, D. Nucleic Acid Res. 1979, 6, 2697.
(7) Fraley, P.; Subramani, S.; Berg, P.; Papahadjopoulos, D. J. Biol. Chem. 1980, 255, 10431.
(8) Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M., Northrop, J. P.; Ringold, G. M.; Danielsen, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7413.
(9) Fraley, P.; Papahadjopoulos, D. Curr. Top. Microbial. Immunol. 1982, 96, 171.
(10) Hoffmam, R. M.; Margolis, L. B.; Bergelson, L. D. FEBS Lett. 1978, 93, 365.
(11) Budker, V. G..; Godvikov, A. A.; Naumova, L. P.; Slepneva, I. A. Nucleic Acid
Res. 1980, 8, 2499.
(12) Behr, J. P. Tetrahedron Lett. 1986, 27, 5861.
(13) Xu, Y., Szoka, F. C. Biochemistry 1996, 35, 5616.
(14) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
(15) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
(16) Zhou, S.; Chu, B. Adv. Mater. 2000, 12, 545.
(17) Antonietti, M.; Burger, C.; Effing, J. Adv. Mater. 1995, 7, 751.
(18) Ober, C. K.; Wegner, G. Adv. Mater. 1997, 8, 17.
(19) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem.
Soc. 2003, 125, 11786.
(20) Gennis, R. B. Biomembranes: Molecular Structure and Function.
Springer-Verlag Press: New York, 1989.
(21) Israelachvili, J. Innermolcular and Surface Forces. Academic Press: New York,
1985.
(22) Kreuter, J. Colloidal Drug Delivery Systems. Marcel Dekker Press: New York,
1994.
(23) New, R. R. C. Liposomes A Practical Approach. Oxford University Press: New
York, 1990.
(24) Ruocco, M. J.; Shipley, G. G. Biochim. Biophys. Acta. 1982, 684, 59.
(25) Slater, J. L.; Huang, C. Biophys. J. 1987, 52, 667.
(26) Safinya, C. R. Curr. Opinion Struct. Biol. 2001, 11, 440.
(27) Felgner, P. L. Nature 1991, 349, 351.
(28) Sternberg, B.; Sorgi, F. L.; huang, L. FEBS Lett. 1994, 356, 361.
(29) Gustafsson, J.; Arvidson, G..; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta.
1995, 1235, 305.
(30) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am.
Chem. Soc. 1997, 119, 832.
(31) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915.
(32) Rädler, J.O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir
1998, 14, 4272.
(33) Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R.
J. Am. Chem. Soc. 2000, 122, 26.
(34) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya, C. R. Science
2000, 288, 2035.
(35) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta. 1998,
1235, 379.
(36) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys J. 1999, 76, 3158.
(37) Kennedy, M.; Pozharski, E. V.; Rakhmanova, V. A.; MacDonald R.C. Biophys. J.
2000, 78, 1620.
(38) Wagner, K.; Harries, D.; May. S.; Kahl, V.; Rädler, J. O.; Ben-Shaul, A.
Langmuir 2000, 16, 303.
(39) Bloomfield, V. A. Biopolymers 1991, 31, 1471.
(40) Bloomfield, V. A. Curr. Opinion Struct. Biol. 1996, 6, 334.
(41) Bloomfield, V. A. Biopolymers 1997, 44, 269.
(42) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441.
(43) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453.
(44) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903.
(45) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
14046.
(46) Lin, A. J.; Slack, N. L.; Ahmad, A.; George, C. X.; Samuel, C. E.; Safinya, C. R.
Biophys. J. 2003, 84, 3307.
(47) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150.
(48) Monnard, P.; Berclaz, N.; Conde-Frieboes, K.; Oberholzer, T. Langmuir
1999, 15, 7504.
(49) Tarahovsky, Y. S.; Khusainova, R. S.; Gorelov, A. V.; Nicolaeva, T. I.;
Deev, A. A.; Dawson, A. K.; Ivanitsky, G. R. FEBS Lett. 1996, 390, 133.
(50) Kharakoz, D. P.; Khusainova, R. S.; Gorelov, A. V.; Dawson, K. A.
FEBS Lett. 1999, 446, 27.
(51) Hayes, M. E.; Gorelov, A. V.; Dawson, K. A. Progr. Colloid. Polym. Sci.
2001, 118, 243.
(52) Francescangeli, O.; Stanic, V.; Gobbi, L.; Bruni, P.; Iacussi, M.; Tosi, G.
Phys. Rev. E 2003, 67, 011904.
(53) McManus, J. J.; Rädler, J. O.; Dawson, K. A. J. Phys. Chem. B 2003, 107, 9869.
(54) O’Hern, C. S.; Lubensky, T. C. Phys. Rev. Lett. 1998, 80, 4345.
(55) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293.
Chapter 2
(1) Zhou, S.; Chu, B. Adv. Mater. 2000, 12, 545.
(2) Antonietti, M.; Burger, C.; Effing, J. Adv. Mater. 1995, 7, 751.
(3) Ober, C. K.; Wegner, G. Adv. Mater. 1997, 8, 17.
(4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
(5) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221.
(6) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
(7) Chesnoy, S.; Huang, L. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 27.
(8) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.
(9) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361.
(10) Huang, L.; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy;
Academic Press: New York, 1999.
(11) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta
1995, 1235, 305.
(12) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.; Byk,
G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J. Proc.
Natl. Acad. Sci. U.S.A. 1997, 94, 14412.
(13) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am.
Chem. Soc. 1997, 119, 832.
(14) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915.
(15) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
(16) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 14046.
(17) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441.
(18) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453.
(19) Malghani, M. S.; Yang, J. J. Phys. Chem. B 1998, 102, 8930.
(20) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903.
(21) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330.
(22) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir
2002, 18, 4873.
(23) Battersby, B. J.; Grimm, R.; Huebner, S.; Ceve, G. Biochim. Biophys. Acta
1998, 1372, 379.
(24) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158.
(25) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293.
(26) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury,
R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J. M.; Lehn, P.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621.
(27) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.; Byk, G.;
Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291.
(28) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O.
J. Phys. Chem. B 1999, 103, 10300.
(29) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem.
Soc. 2003, 125, 11786.
(30) Gao, X.; Huang, L. Biochem. Biophys. Res. Commun. 1991, 179, 280.
(31) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577.
(32) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules
1996, 29, 7491.
(33) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 4.
(34) Hayagawa, K.; Santerre, J. P.; Kwak, J. C. T. Macromolecules 1983, 16, 1642.
(35) Chandar, P.; Somasundaran, P.; Turro, N. J. Macromolecules 1988, 21, 950.
(36) Philips, B.; Dawydoff, W.; Linow, K. J. Z. Chem. 1982, 22, 1.
(37) Bakturov, E. A.; Bimendina, L. A. Adv. Polym. Sci. 1982, 41, 99.
(38) Kabanov, V. A.; Zezin, A. B. Makromol. Chem. Suppl. 1984, 6, 259.
(39) Jones, A. A. L. Soft Condensed Matter; Oxford University Press:
New York, 2002.
(40) Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780.
(41) Wachtel, E.; Borochov, N.; Bach, D.; Miller, I. R. Chem. Phys. Lipids
1998, 92, 127.
(42) Heller,W. T.;Waring, A. J.; Lehrer, R. I.; Harroun, T. A.;Weiss, T. M.; Yang, L.;
Huang, H. W. Biochemistry 2000, 39, 139.
(43) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150.
(44) Lewis, R. N. A. H.; Winter, I.; Kriechbaum, M.; Lohner, K.; McElhaney, R. N.
Biophys. J. 2001, 80, 1329.
Chapter 3
(1) Ikkala, O.; Brinke, G. ten. Science 2002, 295, 2407.
(2) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
(3) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
(4) Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035.; Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R. J. Am. Chem. Soc. 2000, 122, 26.
(5) Huang, H. W. Biochemistry 2000, 39, 8347.
(6) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158.; Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832.; Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.; Battersby, B. J.; Grimm, R.; Huebner, S.; Ceve, G. Biochim. Biophys. Acta. 1998, 1372, 379.
(7) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
(8) Salditt, T.; Koltover, I.; Rädler, J. O.; Safinya, C. R. Phys. Rev. Lett. 1997, 79, 2582.
(9) Neat DNA tends to adopt A conformation when the water activity is reduced for the sake of more economical hydration [16].
(10) Gao, X.; Huang, L. Biochem. Biophys. Res. Commun. 1991, 179, 280.
(11) Sinden, R. R. DNA Structure and Function, Academic Press: New York, 1994.
(12) Wu, C. M.; Liou, W.; Chen, H. L.; Lin, T. L.; Jeng, U. S. Macromolecules 2004, 37, 4974.
(13) Wachtel, E.; Borochov, N. Bach, D.; Miller, I. R. Chem. Phys. of Lipids 1998, 92, 127.
(14) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150.
(15) The cross sectional area of DNA-bound DC-Chol was measured from the surface pressure-area (□-A) isotherm using a Langmuir-Blodgett trough (Nima Technology Model 622D1). We spread 22 □L of DC-Chol solution in chloroform (2.5 mg/mL) on a water solution of 1.0 □M DNA, and the monolayer was compressed for recording the □-A isotherm after 1 hr. The cross sectional area per DC-Chol molecule was estimated from the region where □ started to rise sharply. (The data were kindly provided by Prof. Lin)
(16) Saenger, W.; Hunter, W. N.; Kennard, O. Nature 1986, 324, 385.
(17) Franklin, R. E.; Gosling, R. G. Nature 1953, 172, 156.
(18) Liang, H.; Angelini, T. E.; Ho, J.; Braun, P. V.; Wong, G. C. L. J. Am. Chem. Soc. 2003, 125, 11786.
Chapter 4
(1) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221.
(2) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
(3) Chesnoy, S.; Huang, L. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 27.
(4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
(5) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832.
(6) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
(7) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.
(8) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361.
(9) Huang, L; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy, Academic Press: New York, 1999.
(10) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta.
1995, 1235, 305.
(11) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.; Byk,
G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J. Proc.
Natl. Acad. Sci. U.S.A. 1997, 94, 14412.
(12) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915.
(13) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
14046.
(14) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441.
(15) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453.
(16) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903.
(17) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330.
(18) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir 2002,
18, 4873.
(19) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta.
1998, 1372, 379.
(20) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J. 1999, 76, 3158.
(21) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R.
Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293.
(22) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.; Toury,
R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.; Lehn, J. M.; Lehn,
P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621.
(23) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.; Byk,
G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291.
(24) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O.
J. Phys. Chem. B 1999, 103, 10300.
(25) Pott, T.; Roux, D. FEBS Lett. 2002, 511, 150.
(26) Monnard, P.; Berclaz, N.; Conde-Frieboes, K.; Oberholzer, T. Langmuir 1999,
15, 7504.
(27) Malghani, M. S.; Yang, J. J. Phys. Chem. B 1998, 102, 8930.
(28) Tarahovsky, Y. S.; Khusainova, R. S.; Gorelov, A. V.; Nicolaeva, T. I.; Deev,
A. A.; Dawson, A. K.; Ivanitsky, G. R. FEBS Lett. 1996, 390, 133.
(29) Kharakoz, D. P.; Khusainova, R. S.; Gorelov, A. V.; Dawson, K. A.
FEBS Lett. 1999, 446, 27.
(30) Hayes, M. E.; Gorelov, A. V.; Dawson, K. A. Progr. Colloid Polym. Sci.
2001, 118, 243.
(31) Francescangeli, O.; Stanic, V.; Gobbi, L.; Bruni, P.; Iacussi, M.; Tosi, G.
Phys. Rev. E 2003, 67, 011904.
(32) McManus, J. J.; Rädler, J. O.; Dawson, K. A. J. Phys. Chem. B 2003, 107, 9869.
(33) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577.
(34) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 1996,
29, 7491.
(35) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 41.
(36) Wu, C. M.; Liou, W.; Chen, H. L.; Lin, T. L.; Jeng, U. S. Macromolecules
2004, 37, 4974.
Chapter 5
(1) Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221.
(2) Miller, A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
(3) Chesnoy, S.; Huang, L. Annu. Rev. Biophs. Biomol. Struct. 2000, 29, 27.
(4) Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
(5) Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832.
(6) Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
(7) Rädler, J. O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.
(8) Sternberg, B.; Sorgi, F. L.; Huang, L. FEBS Lett. 1994, 356, 361.
(9) Huang, L; Hung, M. C.; Wagner, E. Nonviral Vectors for Gene Therapy, Academic Press: New York, 1999.
(10) Gustafsson, J.; Arvidson, G.; Karlsson, G.; Almgren, M. Biochim. Biophys.
Acta 1995, 1235, 305.
(11) Pitard, B.; Aguerre, O.; Airiau, M.; Lachages, A. M.; Boukhnikachvili, T.;
Byk, G.; Dubertret, C.; Herviou, C.; Scherman, D.; Mayaux, J. F.; Crouzet, J.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 14412.
(12) Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915.
(13) Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 14046.
(14) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441.
(15) Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453.
(16) Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903.
(17) Ono. M. Y.; Spain, E. M. J. Am. Chem. Soc. 1999, 121, 7330.
(18) Leonenko, Z. V.; Merkle, D.; Lees-Miller, S. P.; Cramb, D. T. Langmuir
2002, 18, 4873.
(19) Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta
1998, 1372, 379.
(20) Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys. J.
1999, 76, 3158.
(21) Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R.
Proc. Natl. Acad. Sci. U.S.A.1999, 96, 12293.
(22) Pitard, B.; Oudrhiri, N.; Vigneron, J. P.; Hauchecorne, M.; Aguerre, O.;
Toury, R.; Airiau, M.; Ramasawmy, R.; Scherman, D.; Crouzet, J.;
Lehn, J. M.; Lehn, P. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 2621.
(23) Raspaud, E.; Pitard, B.; Durand, D.; Aguerre-Chariol, O.; Pelta, J.;
Byk, G.; Scherman, D.; Livolant, F. J. Phys. Chem. B 2001, 105, 5291.
(24) Zantl, R.; Baicu, L.; Artzner, F.; Sprenger, I.; Rapp, G.; Rädler, J. O.
J. Phys. Chem. B 1999, 103, 10300.
(25) Lin, A. J.; Slack, N. L.; Ahmad, A.; George, C. X.; Samuel, C. E.;
Safinya, C. R. Biophys. J. 2003, 84, 3307.
(26) Bloomfield, V. A. Curr. Opinion Struct. Biol. 1996, 6, 334.
(27) Bloomfield, V. A. Biopolymers 1997, 44, 269.
(28) Rau, D. C.; Parsegian V. A. Biophys. J. 1992, 51, 246.
(29) Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir
2000, 16, 9577.
(30) Liou, W.; Geuze, H. J.; Slot, J. W. Histochem. Cell Biol. 1996, 106, 41.
(31) Medellin-Rodriguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules
1996, 29, 7491.
(32) Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780.
(33) Strey, H. H.; Parsegian, V. A.; Podgornik, R.; Phys. Rev. Lett. 1997, 78, 895.
(34) Ghosh, Y. K.; Indi, S. S.; Bhattacharya, S. J. Phys. Chem. B 2001,
105, 10257.
(35) Paré, C.; Lafleur, M. Langmuir 2001, 17, 5587.
(36) Linseisen, F. M.; Thewalt, J. L.; Bloom, M.; Bayerl, T. M. Chem. Phys.
Lipids 1993, 65, 141.
(37) Binder, W. H.; Barragan, V.; Menger, F. M. Angew. Chem. Int. Ed.
2003, 42, 5802.