簡易檢索 / 詳目顯示

研究生: 葉名修
Yeh, Ming-Hsiu
論文名稱: 氧化鈷複合石墨烯奈米材料的製備與鋰離子電池負極材料應用
Fabrication of CoO/reduced graphene oxide nanocomposites as anode materials for lithium ion battery
指導教授: 董瑞安
口試委員: 李志浩
陳正興
張淑閔
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 113
中文關鍵詞: 鋰離子電池負極材料氧化鈷石墨烯奈米複合材料
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鋰離子電池電極材料的選擇中,由於氧化鈷具有較高的理論電容值(715 mAh/g,高於石墨372 mAh/g),且因氧化鈷可催化電解質反應提供額外電容值,使氧化鈷成為被廣泛使用的電極材料,但在大顆粒下,氧化鈷在進行電化學反應時鋰離子傳遞不易以及電子難以在氧化鋰的副產物中傳遞,導致在提高掃速時氧化鈷的電容值有衰減現象。透過加入載體複合分散降低氧化鈷顆粒的尺寸有助於改善鋰離子與電子在材料中的傳遞,但加入大量載體後使氧化鈷的含量減少,使總體電容值下降。在這個研究中,發展出一項新的合成出小顆粒氧化鈷且氧化鈷沉積在還原氧化石墨烯的方法以維持氧化鈷的量且同時提高氧化鈷的利用率,我們利用過程方便簡單的水相下合成硼酸鈷並熱解成氧化鈷的方法,因石墨烯表面上的氧官能基與金屬產生的鍵結以及硼元素,導致經過熱處理後具有分隔CoO顆粒的特性,通過最佳化熱處理時間及氧化鈷負載量後,在氮氣環境下熱處理一小時中,CoO複合量在80 wt%時,可以製備出在XRD下晶粒小於10 nm,且TEM下顆粒小於10 nm的氧化鈷顆粒分散在還原氧化石墨烯上,小顆粒的結果使EIS顯示鈍化模阻抗及電荷轉移阻抗僅56.2Ω,材料經過充放電測試後,CoO/rGO在高掃速2400 mA/g下具有電容值接近500 mAh/g,與低掃速150 mA/g相比有維持率接近60%的結果。未來也可透過利用其他金屬的硼酸鹽製備高負載量和小顆粒的零價金屬或金屬氧化物,在其他領域改善鈷和其他零價金屬或金屬氧化物的應用。


    Cobalt oxide is a promosing electrode material for lithium ion battery because of the high theoretical capacity of 715 mAh/g. In addition, cobalt oxide can proceed another electrolyte catalyzation to provide additional capacity. However, the lithium ions and electrons can not be easily moved through the CoO particles and lithium oxide byproducts when the cobalt oxide particle is large, resulting in the decrease in capacity as the current density increases. Addition of dispersing agents and the decrease in particle size of CoO can improve the transportation of lithium ions and electrons. .However, the decrease in total amounts of CoO also decrease the overall capacity of the CoO nanocomposite. In this study, a novel fabrication method has been developed to synthesize ultrafine CoO nanopaticles and then deposited onto the surface of reduced graphene oxide (CoO/rGO) to maintain the CoO amount as well as to increase the electrochemical reaction efficiency simultaneously. We used a simple and facile aqueous system to produce CoO after the heat treatment of Co3(BO3)2. Since the oxy group on the graphene surface can bond to the metal and boron element, resulting in the separation of CoO particle during the heat treatment. After optimizing the heat treatment time 1 hour in N2 gas and cobalt oxide amount 80 wt% in rGO composite, XRD showed the nano grain size lower than 10 nm, and TEM images showed that particle sizes of CoO was lower than 10 nm and can well disperse in the rGO.Because of the small particle size, The EIS showed the SEI impedance and charge transfer resistance are only 56.2 Ω.After the charge/discharge test, CoO/rGO capacity was up to 500 mAh/g when current rate was 2400 mA/g. In addition, a 60% of retention was obtaiend when the current was 150 mA/g. In the future, It can produce high loading amount and small particle of other metal or metal oxide through the metal borate decomposition. It can improve zero valent metal or metal oxide application through this method

    致謝 i 摘要 ii Abstract iii 目錄 v 表目錄 ix 圖目錄 x 第一章 緒論 1.1 前言 1 1.2 研究動機 3 1.3 研究目的 4 第二章 文獻回顧 5 2.1 鋰離子電池工作原理 5 2.2 奈米粒子特性與鋰離子電池應用 6 2.3 鋰離子電池各部件介紹 6 2.3.1 正極材料 6 2.3.2 負極材料 9 2.3.3 電解質與隔離膜 16 2.4 氧化鈷 18 2.4.1 氧化鈷應用 18 2.4.2 氧化鈷製備 20 2.4.3 氧化鈷複合材料 22 第三章 實驗方法與步驟 28 3.1 實驗藥品與器材 28 3.2 實驗架構與流程 29 3.3 氧化石墨烯合成方法 30 3.4 氧化鈷與石墨烯複合材料 31 3.4.1傅立葉轉換紅外光譜(FT-IR) 32 3.4.2電子能譜儀(XPS) 33 3.4.3 X光粉末繞射儀(XRD) 33 3.4.4 穿透式電子顯微鏡(TEM) 33 3.4.5 比表面積儀(BET) 34 3.4.6 熱重分析儀(TGA) 34 3.4.7 感應耦合電漿發射光譜儀(ICP-OES) 34 3.4.8 拉曼散射光譜(Raman) 35 3.5 鋰離子電池組裝相關與電化學測試 35 3.5.1 電極材料製備與電池組裝 35 3.5.2 定電流充放電測試 37 3.5.3 循環伏安法 38 3.5.4 電化學阻抗法 38 第四章 結果與討論 39 4.1 氧化石墨烯特性鑑定 39 4.1.1 FTIR與XPS官能基分析 39 4.1.2 氧化反應前後結晶變化 40 4.1.3 石墨氧化前後Raman光譜的結構探討 42 4.2 氧化鈷與氧化石墨烯複合材料鑑定 45 4.2.1 不同合成環境的晶相、顆粒與形貌 45 4.2.2 先後加鹼和還原劑的反應機制與晶相顆粒結果 49 4.2.3 氧化鈷與石墨烯間之鍵結情形 55 4.2.4 奈米級氧化鈷顆粒小顆粒之原因 58 4.3 不同熱處理時間之CoO材料鑑定與電池測試 61 4.3.1 不同加熱時間下的晶相變化 61 4.3.2 不同加熱時間氧化鈷顆粒的形貌變化 62 4.3.3 BET比表面積測定 65 4.3.4 Raman光譜鑑定 67 4.3.5 不同熱處理時間電池測試 69 4.4 不同氧化鈷與石墨烯複合比例材料鑑定與電池測試 74 4.4.1 不同氧化鈷石墨烯比例材料XRD鑑定 74 4.4.2 不同氧化鈷比例鑑定-TGA與ICP-OES 76 4.4.3 不同氧化鈷複合比例下TEM分析 78 4.4.4 不同氧化鈷複合比例下之比表面積比較 81 4.4.5 不同氧化鈷複合比例之Raman圖譜 83 4.4.6 不同氧化鈷複合比例下在循環伏安法掃描(CV)之曲線變化 84 4.4.7 不同氧化鈷複合比例之充放電測試 87 4.4.8 不同氧化鈷複合比例下之電化學阻抗分析 92 4.5 電池測試後材料變化 93 第五章 結論 101 5.1 硼酸鈷經熱處理形成奈米級氧化鈷顆粒之方法開發 101 5.2 不同熱處理時間下CoO/rGO的特性探討與電池測試 101 5.3 不同CoO複合比例下CoO/rGO的特性探討與電池測試 101 5.4 總結CoO/rGO製備機制、特性探討與電池測試之貢獻 102 參考文獻 103

    1. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(15), 359-367.
    2. 陳金銘. 下世代高能量鋰電池與材料技術趨勢 2013.
    3. Binotto, G., D. Larcher, A.S. Prakash, R.H. Urbina, M.S. Hegde, and J.-M. Tarascon, Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 powders. Chem. Mater, 2007, 19, 3032-3040.
    4. Ponrouch, A. and M.R. Palacín, Optimisation of performance through electrode formulation in conversion materials for lithium ion batteries: Co3O4 as a case example. J. Power Source, 2012, 212, 233-246.
    5. Ryu, W.-H., J. Shin, J.-W. Jung, and I.-D. Kim, Cobalt(II) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. J. Mater. Chem. A, 2013, 1, 3239-3243.
    6. Sun, Y., X. Hu, Wei Luo, and Y. Huang, Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C, 2012, 116, 20794-20799.
    7. Song, M.-K., S. Park, F.M. Alamgir, J. Cho, and M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater. Sci. Eng., R, 2011, 72, 203-252.
    8. Yan, Z., G. He, M. Cai, H. Meng, and P.K. Shen, Formation of tungsten carbide nanoparticles on graphitized carbon to facilitate the oxygen reduction reaction. J. Power Source, 2013, 242, 817-823.
    9. Sharma, H.S. and A. Sharma, New perspectives of nanoneuroprotection, nanoneuropharmacology and nanoneurotoxicity: modulatory role of amino acid neurotransmitters, stress, trauma, and co-morbidity factors in nanomedicine. Amino Acids, 2013, 45, 1055-1071.
    10. Zhang, Y.J. and Q. Chai, Alkali-activated blast furnace slag-based nanomaterial as a novel catalyst for synthesis of hydrogen fuel. Fuel, 2014, 115, 84-87.
    11. Wang, G.X., Y. Chen, K. Konstantinov, J. Yao, J.-h. Ahn, H.K. Liu, and S.X. Dou, Nanosize cobalt oxides as anode materials for lithium-ion batteries. J. Alloys Compd., 2002(340), L5-L10.
    12. Liu, Z., N. Zhang, and K. Sun, Novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (~20 nm) for lithium ion batteries with superior high–rate performance. J. Mater. Chem, 2012, 22, 11688-11693.
    13. Zhang, W.-M., X.-L. Wu, J.-S. Hu, Y.-G. Guo, and L.-J. Wan, Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Func. Mater, 2008, 18, 3941-3946.
    14. Whittingham, M.S., Electrochemical energy storage and intercalation chemistry. Science, 1976, 192, 1126-1127.
    15. Whittingham, M.S., Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog. Solid State Chem., 1978, 12, 41-99.
    16. Murphy, D.W. and P.A. Christian, Solid state electrodes for high energy batteries. Science, 1979, 205, 651-656.
    17. Murphy, D.W., P.A. Christian, F.J. DiSalvo, and J.N. Carides, Vanadium oxide cathode materials for secondary lithium cells. J. Electrochem. Soc., 1979, 126(3), 497-499.
    18. Mizushima, K., P.C. Jones, P.J. Wiseman, and J.B. Goodenough, LixCoO2 (0<x<l): A new cathode material for batteries of high energy density. Mater. Res. Bull., 1980, 15, 783-789.
    19. Thackeray, M.M., W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Mater. Res. Bull., 1983, 18(4), 461-472.
    20. Armstrong, A.R., A.D. Robertson, and P.G. Bruce, Structural transformation on cycling layered Li(Mn1-yCoy)O2 cathode materials. Electrochim. Acta, 1999, 45, 285-294.
    21. Xu, H.Y., Q.Y. Wang, and C.H. Chen, Synthesis of Li[Li0.2Ni0.2Mn0.6]O2 by radiated polymer gel method and impact of deficient Li on its structure and electrochemical properties. J. Solid State Electrochem., 2008, 12, 1173-1178.
    22. Amatucci, G.G., N. Pereira, T. Zheng, I. Plitz, and J.M. Tarascon, Enhancement of the electrochemical properties of Li1Mn2O4 through chemical substitution. J. Power Source, 1999, 81-82, 39-43.
    23. Huang, Y., R. Jiang, S.-J. Bao, Y. Cao, and D. Jia, LiMn2O4–yBry nanoparticles synthesized by a room temperature solid-state coordination method. Nanoscale. Res. Lett, 2009, 4, 353-358.
    24. Shigemura, H., H. Sakaebe, H. Kageyama, H. Kobayashi, b. A. R. West, R. Kanno, S. Morimoto, S. Nasu, and M. Tabuchi, Structure and electrochemical properties of LiFexMn2-xO4 (0 < x < 0.5) spinel as 5 V electrode material for lithium batteries. J. Electrochem. Soc., 2001, 148(7), A730-A736.
    25. Patoux, S., L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F.L. Cras, and S.M. Séverine Jouanneau, High voltage spinel oxides for Li-ion batteries: From the material research to the application. J. Power Source, 2009, 189, 344-353.
    26. Sung, N.-E., Y.-K. Sun, S.-K. Kim, and M.-S. Jangd, In situ XAFS study of the effect of dopants in Li1+xNi(1-3x)/2Mn(3+x)/2O4 (0 < x < 1/3), a Li-ion battery cathode material. J. Electrochem. Soc., 2008, 155(11), A845-A850.
    27. Guyornard, D. and J.-M. Tarascon, Rocking-chair or lithium-ion rechargeable lithium batteries Adv. Mater., 1994, 6(5), 408-412.
    28. Murphy, D.W., F.J.D. Salvo, J.N. Carides, and J.V. Waszczak, Topochemical reactions of rutile related structures with lithium. Mater. Res. Bull., 1978, 13, 1395-1402.
    29. Lazzari, M. and B. Scrosat, A cyclable lithium organic electrolyte cell based on two intercalation electrodes. J. Electrochem. Soc., 1980, 127(3), 773-774.
    30. Mohri, M., N. Yanagisawa, Y. Tajima, H. Tanaka, T. Mitate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, and H. Wada, Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. J. Power Source, 1989(26), 545-551.
    31. Yazami, R., Surface chemistry and lithium storage capability of the graphite±lithium electrode. Electrochim. Acta, 1999, 45, 87-97.
    32. Hayner, C.M., X. Zhao, and H.H. Kung, Materials for rechargeable lithium-ion batteries. Annu. Rev. Chem. Biomol. Eng, 2012, 3, 445-471.
    33. Dey, A.N., Electrochemical alloying of lithium in organic electrolytes. J. Electrochem. Soc., 1971, 118(10), 1547-1549.
    34. Lee, H.-Y. and S.-M. Lee, Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Source, 2002, 112(2), 649-654.
    35. Kim, J.-B., H.-Y. Lee, K.-S. Lee, S.-H. Lim, and S.-M. Lee, Fe/Si multi-layer thin film anodes for lithium rechargeable thin film batteries. Electrochem. Commun., 2003, 5(7), 544-548.
    36. Du, N., X. Fan, J. Yu, H. Zhang, and D. Yang, Ni3Si2–Si nanowires on Ni foam as a high-performance anode of Li-ion batteries. Electrochem. Commun., 2011, 13(12), 1443-1446.
    37. Kwon, Y. and J. Cho, High capacity carbon-coated Si70Sn30 nanoalloys for lithium battery anode material. Chem. Commun, 2008(9), 1109-1111.
    38. Kim, I.-s., P.N. Kumta, and G.E. Blomgren, Si/TiN nanocomposites-novel anode materials for Li-ion batteries. Electrochem. Solid-State Lett., 2000, 3(11), 493-496.
    39. Kim, I.-s., G.E. Blomgren, and P.N. Kumta, Nanostructured Si/TiB2 composite anodes for Li-ion batteries. Electrochem. Solid-State Lett., 2003, 6(8), A157-A161.
    40. Kim, I.-s., G.E. Blomgren, and P.N. Kumta, Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling. J. Power Source, 2004, 130(1-2), 275-280.
    41. Lee, J.K., K.B. Smith, C.M. Hayner, and H.H. Kung, Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun, 2010, 46(12), 2025-2027.
    42. Kim, H. and J. Cho, Superior lithium electroactive mesoporous Si@Carbon core-shell nanowires for lithium battery anode material. Nano Lett., 2008, 8(11), 3688-3691.
    43. Wen, C.J. and R.A. Hugglns, Thermodynamic study of the lithium-tin system. J. Electrochem. Soc., 1981, 128(6), 1181-1187.
    44. Lupu, C., J.-G. Mao, J.W. Rabalais, and A.M. Guloy, X-ray and neutron diffraction studies on “Li4.4Sn”. Inorg. Chem., 2003, 42(12), 3765-3771.
    45. Tamura, N., R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, and I. Yonezu, Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes. J. Power Source, 2002, 107(1), 48-55.
    46. Nwokeke, U.G., R. Alcántara, J.L. Tirado, R. Stoyanov, and E. Zhecheva, The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries. J. Power Source, 2011, 196(16), 6768-6771.
    47. Tamura, N., R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, and I. Yonezu, Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes. J. Power Source, 2002, 107, 48-55.
    48. Winter, M. and J.r.O. Besenhard, Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta, 1999, 45, 31-50.
    49. Kumar, T.P., R. Ramesh, Y.Y. Lin, and G.T.-K. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem. Commun., 2004, 6(15), 520-525.
    50. Chen, S., Y. Wang, H. Ahn, and G. Wang, Microwave hydrothermal synthesis of high performance tinegraphene nanocomposites for lithium ion batteries. J. Power Source, 2012, 216(15), 22-27.
    51. Wagemaker, M., E.R.H.v. Eck, A.P.M. Kentgens, and F.M. Mulder, Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B, 2009, 113, 224-230.
    52. Lim, J., E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S.-H. Kang, and J. Kim, Enhanced high-rate performance of Li4Ti5O12 nanoparticles for rechargeable Li-ion batteries. J. Electrochem. Soc., 2011, 158(3), A275-A280.
    53. Khomane, R.B., A.S. Prakash, K. Ramesha, and M. Sathiya, CTAB-assisted sol–gel synthesis of Li4Ti5O12 and its performance as anode material for Li-ion batteries. Mater. Res. Bull., 2011, 46, 1139-1142.
    54. Poizot, P., S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-sizedtransition-metaloxidesas negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(28), 496-499.
    55. Reddy, M.V., G.V.S. Rao, and B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev., 2013, 113, 5364-5457.
    56. Liu, H.-j., S.-h. Bo, W.-j. Cui, F. Li, Cong-xiaoWang, and Y.-y. Xia, Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries. Electrochim. Acta, 2008, 53, 6497-6503.
    57. Chi, X., L. Chang, D. Xie, J. Zhang, and GaohuiDu, Hydrothermal preparationof Co3O4/graphene composite as anode material for lithium-ion batteries. Mater. Lett., 2013, 106, 178-181.
    58. Etacheri, V., R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011, 4(9), 3243-3262.
    59. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater., 2010, 22, 587-603.
    60. Arora, P. and Z.J. Zhang, Battery separators. Chem. Rev., 2004, 104, 4419-4462.
    61. Jiao, F. and H. Frei, Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed., 2009(48), 1841-1844.
    62. Rosen, J., G.S. Hutchings, and F. Jiao, Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J. Am. Chem. Soc., 2013(13), 4516-4521.
    63. Lin, H.-K., H.-C. Chiub, H.-C. Tsai, S.-H. Chien, and C.-B. Wang, Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide. Catal. Lett., 2003, 88, 169-174.
    64. Thorm, P., M. Skoglundh, E. Fridell, and B. Andersson, Low-temperature CO oxidation over platinum and cobalt oxide catalysts. J. Catal., 1999(188), 300-310.
    65. Shinde, V.R., S.B. Mahadik, T.P. Gujar, and C.D. Lokhande, Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl. Surf. Sci., 2006(252), 7487-7492.
    66. Srinivasan, V. and J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation. J. Power Source, 2002(108), 15-20.
    67. Sun, Y., X. Hu, W. Luo, and Y. Huang, Ultrathin CoO/Graphene Hybrid Nanosheets: A Highly Stable Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C, 2012(116), 20794-20799.
    68. Cabana, J., L. Monconduit, D. Larcher, and M.R. Palacín, Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Energy. Mater, 2010(22), E170-E192.
    69. Waser, O., M. Hess, A. Güntner, P. Novák, and S.E. Pratsinis, Size controlled CuO nanoparticles for Li-ion batteries. J. Power Source, 2013, 241, 415-422.
    70. Hu, J., H. Li, X. Huang, and L. Chen, Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ionics, 2006(177), 2791-2799.
    71. Cheng, M.-Y., Y.-S. Ye, T.-M. Chiu, C.-J. Pan, and B.-J. Hwang, Size effect of nickel oxide for lithium ion battery anode. J. Power Source, 2014, 253, 27-34.
    72. Liu, J., Y. Zhou, C. Liu, J. Wang, Y. Pana, and D. Xue, Self-assembled porous hierarchical-like CoO@C microsheets transformed from inorganic–organic precursors and their lithium-ion battery application. CrystEngComm, 2012(14), 2669-2674.
    73. Ryu, W.-H., J. Shin, J.-W. Jung, and I.-D. Kim, Cobalt(II) monoxide nanoparticles embedded in porous carbon nanofibers as a highly reversible conversion reaction anode for Li-ion batteries. J. Mater. Chem. A, 2013(1), 3239-3243.
    74. Peng, C., B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, and J. Yang, Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano, 2012, 6(2), 1074-1081.
    75. Wu, Z.-S., W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H.-M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 2010, 4(6), 3187-3194.
    76. Do, J.-S. and C.-H. Weng, Preparation and characterization of CoO used as anodic material of lithium battery. J. Power Source, 2005(146), 482-486.
    77. Yao, W., J. Yang, J. Wang, and Y. Nuli, Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. J. Electrochem. Soc., 2008, 155(12), A903-A908.
    78. Lin, C., J.A. Ritter, and B.N. Popov, Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem. Soc., 1998, 145(12), 4097-4103.
    79. Wang, G., X. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao, Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J. Phys. Chem. C, 2009, 113, 4357-4361.
    80. Liu, Y., C. Mi, L. Su, and X. Zhang, Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta, 2008(53), 2507-2513.
    81. Yu1, T., Y.W. Zhu, X.J. Xu, Z.X. Shen, P.Chen, C.T.Lim, J.T.-L. Thong, and C.-H. Sow, Controlled growth and field-emission properties of cobalt oxide nanowalls. Adv. Mater., 2005, 17(13), 1595-1599.
    82. Wang, G.X., Y. Chen, K. Konstantinov, M. Lindsay, H.K. Liu, and S.X. Dou, Investigation of cobalt oxides as anode materials for Li-ion batteries. J. Power Source, 2002, 109(1), 142-147.
    83. Purkayastha, D.D., BedabratSarma, and ChiraR.Bhattacharjee, Surfactant-assisted low-temperature synthesis of monodispersed phase pure cubic CoO solid nanoparallelepipeds via thermal decomposition of cobalt(II) acetylacetonate. Mater. Lett., 2013(107), 71-74.
    84. Park, J., G.-P. Kim, H.N. Umh, I. Nam, S. Park, Y. Kim, and J. Yi, Co3O4 nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries. J. Nanopart. Res., 2013(15), 1943-1952.
    85. Taghavimoghaddam, J., G.P. Knowles, and A.L. Chaffee, SBA-15 supported cobalt oxide species: Synthesis, morphologyand catalytic oxidation of cyclohexanol using TBHP. J. Mol. Catal. A: Chem., 2013, 379, 277-286.
    86. Park, J., G.-P. Kim, H.N. Umh, I. Nam, S. Park, Y. Kim, and J. Yi, Co3O4 nanoparticles embedded in ordered mesoporous carbon with enhanced performance as an anode material for Li-ion batteries. J. Nanopart. Res., 2013, 15, 1943-1952.
    87. Kim, J.-C., I.-S. Hwang, S.-D. Seo, and D.-W. Kim, Nanocomposite Li-ion battery anodes consisting of multiwalled carbon nanotubes that anchor CoO nanoparticles. Mater. Lett., 2013, 104, 13-16.
    88. Wang, G., X. Shen, J. Yao, D. Wexler, and J.-h. Ahn, Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries. Electrochem. Commun., 2009, 11, 546-549.
    89. Sun, Z., D.K. James, and J.M. Tour, Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett, 2011(2), 2425-2432.
    90. GEIM, A.K. and K.S. NOVOSELOV, The rise of graphene. Nat. Mater., 2007, 6, 183-191.
    91. Leenaerts, O., B. Partoens, and F.M. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B, 2008(77), 125416.
    92. Schedin, F., A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6, 652-655.
    93. Cai, W., Y. Zhu, X. Li, R.D. Piner, and R.S. Ruoff, Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett., 2009(95), 123115.
    94. LI, X., G. ZHANG, X. BAI, X. SUN, X. WANG, E. WANG, and H. DAI, Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotech, 2008, 3, 538-542.
    95. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(10), 197-200.
    96. Zhang, Y., Y.-W. Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438(10), 201-204.
    97. Zhu, Y., S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, and R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. carbon, 2010, 48(7), 2106-2122.
    98. Zhu, Y., M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, and R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano, 2010, 4(2), 1227-1233.
    99. Fan, Z., J. Yan, G. Ning, T. Wei, L. Zhi, and F. Wei, Porous graphene networks as high performance anode materials for lithium ion batteries. Carbon, 2013(60), 558-561.
    100. Lian, P., X. Zhu, S. Liang, Z. Li, W. Yang, and H. Wang, Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim. Acta, 2010(55), 3909-3914.
    101. Wang, G., X. Shen, J. Yao, and J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 2009(47), 2049-2053.
    102. Rai, A.K., J. Gim, L.T. Anh, and J. Kim, Partially reduced Co3O4/graphene nanocomposite as an anode material for secondary lithium ion battery. Electrochim. Acta, 2013, 100, 63-71.
    103. Li, L., G. Zhou, Z. Weng, X.-Y. Shan, F. Li, and H.-M. Cheng, Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon, 2014, 67, 500-507.
    104. Serghini-Monim, S., P.R. Norton, R.J. Puddephatt, K.D. Pollard, and J.R. Rasmussen, Adsorption of a silver chemical vapor deposition precursor on polyurethane and reduction of the adsorbate to silver using formaldehyde. J. Phys. Chem. B, 1998(102), 1450-1458.
    105. Yuan, Y., W. Jiang, Y. Wang, P. Shen, F. Li, P. Li, F. Zhao, and H. Gao, Hydrothermal preparation of Fe2O3/graphene nanocomposite and itsenhanced catalytic activity on the thermal decomposition ofammonium perchlorate. Appl. Surf. Sci., 2014(303), 354-359.
    106. Zhou, J., H. Song, L. Maab, and X. Chen, Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Advances, 2011, 1, 782-791.
    107. Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010(22), 3906-3924.
    108. Qi, Y., H. Zhang, N. Du, and D. Yang, Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A, 2013, 1(6), 2337.
    109. Lerf, A., H. He, M. Forster, and J. Klinowski, Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102, 4477-4482.
    110. He, H., J. Klinowski, M. Forster, and A. Lerf, A new structural model for graphite oxide. Chem. Phys. Lett., 1998, 287, 53-56.
    111. Li, B., H. Cao, J. Shao, G. Li, M. Qu, and G. Yin, Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg. Chem., 2011, 50(1628-1632), 1628.
    112. Tao, L., J. Zai, K. Wang, H. Zhang, M. Xu, J. Shen, Y. Su, and X. Qian, Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J. Power Source, 2012, 202, 230-235.
    113. Peng, C., B. Chen, Y. Qin, S. Yang, C. Li, Y. Zuo, S. Liu, and J. Yang, Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano, 2012, 6, 1074-1081.
    114. Connor, P.A. and J.T.S. Irvine, Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. Electrochim. Acta, 2002(47), 2885-2892.
    115. Ni, Z., Y. Wang, T. Yu, and Z. Shen, Raman spectroscopy and imaging of graphene. Nano Res, 2010, 1(4), 273-291.
    116. Hawaldar, R., P. Merino, M.R. Correia, I. Bdikin, J. Gracio, J. Mendez, J.A. Martin-Gago, and M.K. Singh, Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition. Scientific reports, 2012, 2, 682.
    117. Sheng, C., Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel, 2007, 86(15), 2316-2324.
    118. Baby, T.T. and R. Sundara, A facile synthesis and field emission property investigation of Co3O4 nanoparticles decorated graphene. Mater. Chem. Phys., 2012, 135(2-3), 623-627.
    119. Wang, B., Y. Wang, J. Park, H. Ahn, and G. Wang, In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J. Alloys Compd., 2011, 509(29), 7778-7783.
    120. Zhu, X., G. Ning, X. Ma, Z. Fan, C. Xu, J. Gao, C. Xu, and F. Wei, High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. J. Mater. Chem. A, 2013, 1(44), 14023.
    121. Shin, H.-J., K.K. Kim, A. Benayad, S.-M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi, and Y.H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Func. Mater, 2009, 19(12), 1987-1992.
    122. Zhu, Y., H. Li, Y. Koltypin, and A. Gedanken, Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. J. Mater. Chem, 2002, 12, 729-733.
    123. Lieth, R.M.A., Preparation and crystal growth of materials with layered structures. Springer Netherlands.
    124. Zhang, X.X., G. Gu, H. Huang, S. Yang, and Y. Du, Self-assembled Co3(BO3)2/surfactant nanostructured multilayers. Journal of physics:Condensed Matter, 2001(13), 3913-3921.
    125. Gao, X., J. Jang, and S. Nagase, Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C., 2010(114), 832-842.
    126. Lu, G., S. Mao, S. Park, R.S. Ruoff, and J. Chen, Facile, noncovalent decoration of graphene oxide sheets with nanocrystals. Nano Res, 2009, 2, 192-200.
    127. Yang, Y., J. Zhang, X. Wu, Y. Fu, H. Wu, and S. Guo, Composites of boron-doped carbon nanosheets and iron oxide nanoneedles: fabrication and lithium ion storage performance. J. Mater. Chem. A, 2014, 2(24), 9111-9117.
    128. Rowsell, J.L.C., N.J. Taylor, and L.F. Nazar, Crystallographic investigation of the Co–B–O system. J. Solid State Chem., 2003, 174, 189-197.
    129. Ni, Z., Y. Wang, T. Yu, and Z. Shen, Raman Spectroscopy and Imaging of Graphene. Nano Res, 2008(1), 273-291.
    130. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. J. Power Source, 2006, 162(2), 1379-1394.
    131. Gachot, G.g., P. Ribie`re, D. Mathiron, S. Grugeon, M. Armand, J.-B. Leriche, S. Pilard, and S.p. Laruelle, Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal. Chem., 2011(83), 478-485.
    132. Laruelle, S., S. Grugeon, P. Poizot, M. Dolle´, L. Dupont, and J.-M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc., 2002, 149(5), A627-A634.
    133. Dalverny, A.-L., J.-S. Filhol, and M.-L. Doublet, Interface electrochemistry in conversion materials for Li-ion batteries. J. Mater. Chem, 2011(21), 10134-10142.
    134. Glavee, G.N., K.J. Klabunde, C.M. Sorensen, and G.C. Hadjapanayis, Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir, 1992, 8, 771-773.
    135. Choi, B.G., S.-J. Chang, Y.B. Lee, J.S. Bae, H.J. Kima, and Y.S. Huh, 3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale, 2012, 4, 5924-5930.
    136. Park, S., S.-J. Park, and S. Kim, Preparation and capacitance behaviors of cobalt oxide/graphene composites. Carbon Letters, 2012, 13(2), 130-132.
    137. Zhu, X., G. Ning, X. Ma, Z. Fan, C. Xu, J. Gao, C. Xua, and F. Wei, High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries. J. Mater. Chem. A, 2013, 1, 14023-14030.
    138. Yao, W., J. Yang, JiulinWang, and L. Tao, Synthesis and electrochemical performance of carbon nanofiber–cobalt oxide composites. Electrochim. Acta, 2008, 53, 7326-7733-.
    139. Yao, W.-L., J.-L. Wang, J. Yang, and G.-D. Du, Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. J. Power Source, 2008, 176, 369-372.
    140. Kim, J.-C., I.-S. Hwang, S.-D. Seo, and Dong-WanKim, Nanocomposite Li-ionbattery anodes consisting of multiwalled carbon nanotubes that anchor CoO nanoparticles. Mater. Lett., 2013, 104, 13-16.
    141. Zhang, H., H. Tao, Y. Jiang, Z. Jiao, M. Wu, and B. Zhao, Ordered CoO/CMK-3 nanocomposites as the anode materials for lithium-ion batteries. J. Power Source, 2010, 195, 2950-2955.
    142. Taghavimoghaddam, J., G.P. Knowles, and A.L. Chaffee, Preparation and characterization of mesoporous silica supported cobalt oxide as a catalyst for the oxidation of cyclohexanol. J. Mol. Catal. A: Chem., 2012, 358, 79-88.
    143. Prakash, A., S. Chandra, and D. Bahadur, Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon, 2012, 50(11), 4209-4219.
    144. Wu, X., Z. Wang, L. Chen, and X. Huang, Increment of Li storage capacity in B2O3-Modified hard carbon as anode material for Li-ion batteries. J. Electrochem. Soc., 2004, 151(12), A2189.
    145. Shi, M., Z. Chen, and J. Sun, Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cement. Concrete. Res., 1999(29), 1111-1115.
    146. Goward, G.R., L.F. Nazar, and W.P. Power, Electrochemical and multinuclear solid-state NMR studies of tin composite oxide glasses as anodes for Li ion batteries. J. Mater. Chem, 2000, 10, 1241-1249.
    147. Shao, Y., J. Wang, M. Engelhard, C. Wang, and Y. Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem, 2010, 20(4), 743.
    148. CHEN, J. and F. CHENG, Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res., 2008, 42(6), 713-723.
    149. Takahashi, M., S.-i. Tobishima, K. Takei, and Y. Sakurai, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics, 2002(148), 283-289.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE