研究生: |
宋信諺 Sung, Hsin-Yen |
---|---|
論文名稱: |
S100B蛋白質可干擾S100A6與RAGE V domain結合並調控細胞增生的生化活性 S100B modulates cell proliferation by interfering with S100A6-RAGE V-domain interaction |
指導教授: |
余靖
Yu, Chin |
口試委員: |
蘇士哲
Sue, Shih-Che 楊立威 Yang, Lee-Wei 孫仲銘 Sun, Chung-Ming |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | S100B蛋白質 、S100A6蛋白質 、RAGE 蛋白質 、核磁共振光譜 、HADDOCK結構計算 、WST-1 assay細胞線實驗 |
外文關鍵詞: | S100B protein, S100A6 protein, RAGE protein, NMR HSQC, HADDOCK structure calculation, WST-1 Assay |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
S100蛋白質家族是分子量小的酸性蛋白質家族,分子量落在10kDa,多存在於脊椎動物的組織與細胞當中。S100蛋白家族具有EF hand結構( helix-loop-helix),可以與鈣離子結合,產生構型變化,使得疏水性區域得以與目標蛋白或分子結合,產生特定生理功能。S100蛋白家族通常能形成多聚體,例如:同質二聚體 ,且由於S100蛋白結構的相似性,彼此也有可能形成異質二聚體。此外,S100蛋白彼此間,結構上最相異的部分在於Hinge區域 (用與連接helix2 與helix3),hinge區同時也是目標蛋白主要結合位置之一,因為hinge區域結構的不同,不同的S100蛋白具有不同的特性。
本篇論文研究mS100A6與S100B的關係,兩種蛋白質同質二聚體皆能與RAGE (Receptor for advanced glycation endproducts)結合,使得RAGE蛋白Cytoplasmid domain相互靠近,進而產生autophosphorylation,經由訊號傳遞反應,造成細胞增生。此外,已有研究顯示,mS100A6與S100B能夠相互結合成異質二聚體,透過研究mS100A6與S100B的結合位向,便能知曉S100B 是否能夠作為抑制劑,抑制mS100A6-RAGE V-domain 的交互作用。
因此,本實驗透過大腸桿菌表現與純化mS100A6與S100B蛋白質,並搭配M9培養液體(15N標記)觀察特定蛋白質的訊號,透過NMR HSQC 二維核磁共振滴定實驗,得知mS100A6與S100B蛋白質在生成異質二聚體時,兩蛋白質所使用的胺基酸位置,再將光譜上得知的胺基酸訊號作為HADDOCK軟體的輸入參數,進而計算出最佳的蛋白質異質二聚體三維結構圖。經由PyMOL軟體將異質二聚體的三維結構圖與已發表的mS100A6-RAGE V-domain結構圖進行疊圖分析,最終發現S100B可以當作抑制劑,阻擋mS100A6-RAGE V-domain 的交互作用,抑制細胞的增生。
最後,在利用細胞實驗WST-1 Assay實際進行細胞增生率的量測,採用SW480 Cell line進行,分別使用四種條件,第一組為控制組,不添加S100蛋白質,第二組為添加mS100A6作為條件,第三組為添加S100B,最後一組為加入mS100A6-S100B異質二聚體,比較這四種條件,可以得知異質二聚體的存在確實可以降低細胞的增生率,因此,可以進一步證實S100B可以作為抑制mS100A6-RAGE V-domain 的交互作用的抑制劑。
S100 proteins are small-sized acidic proteins. They own a characteristic structure which is called an EF-hand structure. The EF-hand structure is used to bind with calcium ions. After binding with calciumn ions, the structures of the S100 proteins are altered, which brings about the exposure of the hydrophobic area of the proteins. The hydrophobic parts of the proteins are often used to bind with the target proteins or molecules, which causes the following downstream physiological reactions. For example, mS100A6 and S100B can bind with the target protein which is RAGE V-domain to induce the cell proliferation. The S100 proteins are prone to form homodimers. In addition, given that they share similar structures, the S100 proteins can form heterodimers with one another as well.
From the previously reported literature, mS100A6 homodimer can interact with RAGE V-domain and induce the cell proliferation. In addition, as per the reported paper, mS100A6 can also interact with S100B to form a heterodimer. The purpose of this thesis, therefore, is to find out the orientation of S100B binding to mS100A6 and the three-dimensional structure of the heterodimer. S100B is the potential inhibitor to block the interaction between mS100A6 and RAGE V-domain.
In this thesis, we utilize the plasmid from E-coli as a vector transferred into the E-coli cells and induce the cells to express mS100A6 and S100B proteins by adding IPTG. After the expression and the purification procedures of mS100A6 and S100B proteins in the M9 media, we can get the NMR HSQC spectra of the specific proteins. After the analysis of the spectra, we are able to <span class="highlighter highlight-on">label</span> all the residues used in the interface during the formation of the heterodimer of mS100A6 and S100B. We input the residues as parameters into the HADDOCK software and we can get the calculated structure afterwards.
We draw a conclusion that S100B structurally blocks the interaction between mS100A6 and RAGE V-domain after overlapping the newly calculated structure with the previously reported structure of mS100A6 and RAGE V-domain.
Lastly, by WST-1 Assay, we can test the conditions for the cell growth in the presence and absence of the mS100A6-S100B heterodimer. The result shows that the SW480 cells grow more efficiently through the interaction between mS100A6 homodimer and RAGE V-domain. The growth rate goes down with the heterodimer involved. S100B can be an inhibitor of an interplay between mS100A6 and RAGE V-domain.
參考文獻
1. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of Biomolecular NMR vol. 44 213–223 (2009).
2. Nilges, M., MacIas, M. J., O’Donoghue, S. I. & Oschkinat, H. Automated NOESY interpretation with ambiguous distance restraints: The refined NMR solution structure of the pleckstrin homology domain from β-spectrin. Journal of Molecular Biology vol. 269 408–422 (1997).
3. Linge, J. P., Habeck, M., Rieping, W. & Nilges, M. ARIA: Automated NOE assignment and NMR structure calculation. Bioinformatics vol. 19 315–316 (2003).
4. Dominguez, C., Boelens, R. & Bonvin, A. M. J. J. HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society vol. 125 1731–1737 (2003).
5. Hubbard, S. J. & Thornton, J. M. NACCESS Computer Program, Department of Biochemistry and Molecular Biology. (1996).
6. Moore, B. W. A soluble protein characteristic of the nervous system. Biochemical and Biophysical Research Communications vol. 19 739–744 (1965).
7. MOORE, B. W. & MCGREGOR, D. Chromatographic and Electrophoretic Fractionation of Soluble Proteins of Brain and Liver. J Biol Chem vol. 240 1647–1653 (1965).
8. Isobe, T. & Okuyama, T. The amino-acid sequence of the alpha subunit in bovine brain S-100a protein. Eur. J. Biochem. vol. 116 79–86 (1981).
9. Dowarha, D., Chou, R. H. & Yu, C. S100B as an Antagonist to Interfere with the Interface Area Flanked by S100A11 and RAGE v Domain. ACS Omega vol. 3 9689–9698 (2018).
10. Kiryushko, D. et al. Molecular Mechanisms of Ca2+ Signaling in Neurons Induced by the S100A4 Protein. Molecular and Cellular Biology vol. 26 3625–3638 (2006).
11. Leukert, N. et al. Calcium-dependent Tetramer Formation of S100A8 and S100A9 is Essential for Biological Activity. Journal of Molecular Biology vol. 359 961–972 (2006).
12. Moroz, O. V., Dodson, G. G., Wilson, K. S., Lukanidin, E. & Bronstein, I. B. Multiple structural states of S100A12: A key to its functional diversity. Microscopy research and technique vol. 60 581–592 (2003).
13. Ostendorp, T. et al. Structural and functional insights into RAGE activation by multimeric S100B. EMBO Journal vol. 26 3868–3878 (2007).
14. Rustandi, R. R. et al. Three-dimensional solution structure of the calcium-signaling protein apo-S100A1 as determined by NMR. Biochemistry vol. 41 788–796 (2002).
15. Korndörfer, I. P., Brueckner, F. & Skerra, A. The Crystal Structure of the Human (S100A8/S100A9)2 Heterotetramer, Calprotectin, Illustrates how Conformational Changes of Interacting α-Helices Can Determine Specific Association of Two EF-hand Proteins. Journal of Molecular Biology vol. 370 887–898 (2007).
16. Wang, G. et al. Heterodimeric interaction and interfaces of S100A1 and S100P. Biochemical Journal vol. 382 375–383 (2004).
17. Tarabykina, S. et al. Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. FEBS Letters vol. 475 187–191 (2000).
18. Donato, R. et al. Functions of S100 Proteins. Current Molecular Medicine vol. 13 24–57 (2012).
19. Schäfer, B. W. & Heizmann, C. W. The S100 family of EF-hand calcium-binding proteins: Functions and pathology. Trends in Biochemical Sciences vol. 21 134–140 (1996).
20. Zimmer, D. B., Wright Sadosky, P. & Weber, D. J. Molecular mechanisms of S100-target protein interactions. Microscopy research and technique vol. 60 552–559 (2003).
21. Deloulme, J. C. et al. S100A6 and S100A11 are specific targets of the calcium- and zinc-binding S100B protein in vivo. Journal of Biological Chemistry vol. 275 35302–35310 (2000).
22. Hirschhorn, R. R., Aller, P., Yuan, Z. A., Gibson, C. W. & Baserga, R. Cell-cycle-specific cDNAs from mammalian cells temperature sensitive for growth. Proceedings of the National Academy of Sciences of the United States of America vol. 81 6004–6008 (1984).
23. Filipek, A. & Leśniak, W. Current view on cellular function of S100A6 and its ligands, CacyBP/SIP and Sgt1. Postępy Biochemii vol. 64 242–252 (2018).
24. Gonzalez, L. L., Garrie, K. & Turner, M. D. Role of S100 proteins in health and disease. Biochimica et Biophysica Acta - Molecular Cell Research vol. 1867 (2020).
25. Leclerc, E. The Role of the Receptor for Advanced Glycation End Products in Malignant Melanoma. Brain Metastases from Primary Tumors: Epidemiology, Biology, and Therapy of Melanoma and Other Cancers vol. 3 119–132 (2016).
26. Weterman, M. A. J., Ruiter, D. J. & Bloemers, H. P. J. Expression of Calcyclin in Human Melanoma Cell Lines Correlates with Metastatic Behavior in Nude Mice. Cancer Research vol. 52 1291–1296 (1992).
27. S100A6 miR193a regulates the proliferation, invasion, migration and angiogenesis of lung cancer cells through the P53 acetylation.
28. Calabretta, B. et al. Cell-cycle-specific genes differentially expressed in human leukemias. Proceedings of the National Academy of Sciences of the United States of America vol. 82 4463–4467 (1985).
29. Mohan, S. K., Gupta, A. A. & Yu, C. Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE). Biochemical and Biophysical Research Communications vol. 434 328–333 (2013).
30. Yang, Q., O’Hanlon, D., Heizmann, C. W. & Marks, A. Demonstration of heterodimer formation between S100B and S100A6 in the yeast two-hybrid system and human melanoma. Experimental Cell Research vol. 246 501–509 (1999).
31. Kligman, D. & Hilt, D. C. The S100 protein family. Trends in Biochemical Sciences vol. 13 437–443 (1988).
32. Hartman, K. G., Mcknight, L. E., Liriano, M. A. & Weber, D. J. The evolution of S100B inhibitors for the treatment of malignant melanoma. Future Medicinal Chemistry vol. 5 97–109 (2013).
33. Smith, S. P. & Shaw, G. S. A change-in-hand mechanism for S100 signalling. Biochemistry and Cell Biology vol. 76 324–333 (1998).
34. Donato, R. & Heizmann, C. W. S100B protein in the nervous system and cardiovascular apparatus in normal and pathological conditions. Cardiovascular Psychiatry and Neurology (2010) doi:10.1155/2010/929712.
35. Wu, K. J., Wang, W., Wang, H. M. D., Leung, C. H. & Ma, D. L. Interfering with S100B–effector protein interactions for cancer therapy. Drug Discovery Today vol. 25 1754–1761 (2020).
36. Wilder, P. T. et al. Recognition of the tumor suppressor protein p53 and other protein targets by the calcium-binding protein S100B. Biochimica et Biophysica Acta - Molecular Cell Research vol. 1763 1284–1297 (2006).
37. Fernandez-Fernandez, M. R., Veprintsev, D. B. & Fersht, A. R. Proteins of the S100 family the regulate the oligomerization of p53 tumor suppressor. Proceedings of the National Academy of Sciences of the United States of America vol. 102 4735–4740 (2005).
38. KD, P. & L, F. Structural Basis for S100B Interaction with its Target Proteins. Journal of Molecular and Genetic Medicine vol. 12 (2018).
39. Ivanenkov, V. V., Gordon A. Jamieson, J., Gruenstein, E. & Dimlich, R. V. W. Characterization of S-100b Binding Epitopes. The Journal of Biological Chemistry vol. 270 14651–14658 (1995).
40. Leclerc, E., Fritz, G., Vetter, S. W. & Heizmann, C. W. Binding of S100 proteins to RAGE: An update. Biochimica et Biophysica Acta - Molecular Cell Research vol. 1793 993–1007 (2009).
41. Bhattacharya, S., Large, E., Heizmann, C. W., Hemmings, B. A. & Chazin, W. J. Structure of the Ca 2+ /S100B/NDR Kinase Peptide Complex: Insights into S100 Target Specificity and Activation of the Kinase . Biochemistry vol. 45 1536–1536 (2006).
42. Dempsey, B. R. & Shaw, G. S. Identification of calcium-independent and calcium-enhanced binding between S100B and the dopamine D2 receptor. Biochemistry vol. 50 9056–9065 (2011).
43. Donato, R. et al. S100B’s double life: Intracellular regulator and extracellular signal. Biochimica et Biophysica Acta - Molecular Cell Research vol. 1793 1008–1022 (2009).
44. Baudier, J., Delphin, C., Grunwald, D., Khochbin, S. & Lawrence, J. J. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proceedings of the National Academy of Sciences of the United States of America vol. 89 11627–11631 (1992).
45. Covalent small molecule inhibitors of Ca(2+)-bound S100B.
46. Chavakis, T., Bierhaus, A. & Nawroth, P. P. RAGE (receptor for advanced glycation end products): A central player in the inflammatory response. Microbes and Infection vol. 6 1219–1225 (2004).
47. Neeper, M. et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of Biological Chemistry vol. 267 14998–15004 (1992).
48. Leclerc, E., Fritz, G., Weibel, M., Heizmann, C. W. & Galichet, A. S100B and S100A6 differentially modulate cell survival by interacting with distinct RAGE (receptor for advanced glycation end products) immunoglobulin domains. Journal of Biological Chemistry vol. 282 31317–31331 (2007).
49. Yamamoto, Y. & Yamamoto, H. Interaction of receptor for advanced glycation end products with advanced oxidation protein products induces podocyte injury. Kidney International vol. 82 733–735 (2012).
50. Kleckner, I. R. & Foster, M. P. An introduction to NMR-based approaches for measuring protein dynamics. Biochimica et Biophysica Acta - Proteins and Proteomics vol. 1814 942–968 (2011).
51. in nuclear magnetic resonance spectroscopy, W.-M. P. Using chemical shift perturbation to characterise ligand binding. Progress in nuclear magnetic resonance spectroscopy (2013).