簡易檢索 / 詳目顯示

研究生: 謝 璞
Saxena, Apoorv
論文名稱: 基於RNN 模型的GRU和LSTM方法結合AES 加密與智慧合約進行來源身份驗證
AES Encryption and RNN-based Models GRU and LSTM Methods for Source Authentication with Smart Contracts
指導教授: 孫宏民
Sun, Hung-Min
口試委員: 許富皓
Hsu, Fu-Hau
黃育綸
Huang, Yu-Lun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 52
中文關鍵詞: 區塊鏈深度神經網路智慧合約來源認證高級加密標準(AES)
外文關鍵詞: Blockchain, Advanced Encryption Standard(AES), Deep Neural Networks, Smart Contract, Source Authentication
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了解決具有相同訊息的來源身份驗證問題,本研究提出了一種混合架構,
    其中通過使用深度學習神經網路發現數據集中的重複項。而區塊鏈部分為訊息
    源提供了不同的元數據,使發送者和接收者都能夠意識到訊息是準確的,不能
    被修改或更改。
    此外,該系統還部署了基於RNN 的LSTM 和GRU 模型神經網路,以確保
    該方法在本系統應用中是否表現更好,並利用以太坊區塊鏈在雙方之間進行交
    易。此外,我們的系統還使用了高級加密標準(AES)技術來保護它們。在這
    裡AES技術使用加密和解密密鑰方式。這個系統結構的想法已經在樹莓派設備
    上執行並在小系統流程圖中研究了它的可行性。
    最後,本研究使用的數據集是來自Kaggle 網站的“圖像加密和解密數據
    集”,性能結果表明,與GRU 相比,LSTM 算法在特定數據集中的準確率達
    到0.9635。智慧合約模組具有可驗證性、可用性、防篡改和可行性4 個屬性,
    而AES 為系統提供了更強大的加密方法。


    To address the problem of source authentication and duplicated information,
    this study proposes a hybrid architecture in which duplicates in the dataset are

    found using a neural network. While the blockchain part provides a distinct in-
    formation source, enabling both the sender and the recipient to know that the

    information is accurate and cannot be modified or altered. I have deployed RNN-
    based LSTM and GRU models in the neural networks to determine whether the

    method performs better in these applications. I have also utilized the Ethereum

    blockchain to carry out transactions between the two parties and used the Ad-
    vanced Encryption Standard(AES) technique to protect them. Here, encryption

    and decryption keys are on the AES technique. I have used Raspberry Pi to
    implement it to look into its feasibility in small systems.
    The dataset used in this paper is the “Image encryption and decryption dataset”
    by Kaggle and the performance results show that the LSTM algorithm performs
    well compared to GRU yielding a 0.9635 accuracy rate on the particular dataset.
    Our smart contract module has 4 properties which are verifiability, availability,
    tamper-resistance, and usability while AES provides a stronger encryption method
    for the system.

    Abstract (Chinese) I Abstract II Acknowledgements III Contents IV List of Figures VI List of Tables VIII 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4.1 Ethereum Blockchain . . . . . . . . . . . . . . . . . . . . . 7 1.4.2 Transaction and Gas . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.4 Difference Between Contract and Traditional Smart Contract 8 1.4.5 Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 9 IV 1.6 Decentralized Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Related Works 12 3 Proposed Methodology 18 3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 AES Encryption: . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4 Smart Contract for Light Devices . . . . . . . . . . . . . . . . . . . 25 3.5 Deep learning - GRU and LSTM Algorithm . . . . . . . . . . . . . 28 3.6 Gated Recurrent Unit- GRU algorithm . . . . . . . . . . . . . . . . 29 3.7 LSTM ( Long Short Term Memory Algorithm) . . . . . . . . . . . . 31 4 Evaluation Results and Discussion 35 4.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusion 40 6 Discussion and Future Work 42 Bibliography 44

    Ruddick, G. (2017). Experts sound alarm over news websites’ fake news
    twins’. The Guardian. [online] Available at:
    https://www.theguardian.com/technology/2017/aug/18/
    experts-sound-alarm-over-news-websites-fake-news-twins
    [2] Ugly Twins: a novel type of attacks on local independent media in Serbia,”
    Reporters Without Borders [online] Available at: https://rsf.org/en/
    ugly-twins-novel-type-attacks-local-independent-media-serbia
    [3] Shu, K., Bernard, H. R., Liu, H. (2019). Studying fake news via network
    analysis: detection and mitigation. In Emerging research challenges and
    opportunities in computational social network analysis and mining (pp.
    43-65). Springer, Cham [online] Available at:
    https:https://arxiv.org/abs/1804.10233
    [4] Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., de Alfaro, L.
    (2017). Some like it hoax: Automated fake news detection in social networks
    Available at: https://arxiv.org/abs/1704.07506
    [5] Qayyum, A., Qadir, J., Janjua, M. U., Sher, F. (2019). Using blockchain to
    rein in the new post-truth world and check the spread of fake news. IT
    Professional, 21(4), 16-24. https://arxiv.org/abs/1903.11899
    [6] Rodier, S., Carter, D. (2020, May). Online near-duplicate detection of news
    articles. In Proceedings of The 12th Language Resources and Evaluation
    Conference (pp. 1242-1249).
    https://aclanthology.org/2020.lrec-1.156/
    [7] Mathew, M., Das, S. N., Vijayaraghavan, P. K. (2011). A novel approach for
    near-duplicate detection of web pages using TDW matrix. International
    Journal of Computer Applications, 19(7), 16-21. .
    https://www.ijcaonline.org/archives/volume19/number7/2374-3128
    [8] Hajishirzi, H., Yih, W. T., Kolcz, A. (2010, July). Adaptive near-duplicate
    detection via similarity learning. In Proceedings of the 33rd international
    ACM SIGIR conference on Research and development in information
    retrieval (pp. 419-426).
    https://dl.acm.org/doi/abs/10.1145/1835449.1835520.
    [9] Wang, J. H., Chang, H. C. (2009, October). Exploiting sentence-level
    features for near-duplicate document detection. In Asia Information
    Retrieval Symposium (pp. 205-217). Springer, Berlin, Heidelberg.
    https://dl.acm.org/doi/abs/10.1007/978-3-642-04769-5_18
    [10] Szabo, N. (1997). Formalizing and securing relationships on public networks,
    First Monday
    https://firstmonday.org/ojs/index.php/fm/article/view/548
    [11] Roberto Cavazos, (2019). Exclusive: Fake news is costing the world 78
    billion a year. Retrieved November 23, 2020, https://cheddar.com/media/
    exclusive-fakenews-is-costing-the-world-billion-a-year
    [12] Srivastava, S. (2012). Duplicity, intimacy, community: An ethnography of
    ID cards, permits and other fake documents in Delhi. Thesis Eleven, 113(1),
    78-93
    https://journals.sagepub.com/doi/full/10.1177/0725513612456686
    [13] Abdibayev, A., Chen, D., Chen, H., Poluru, D., Subrahmanian, V. S. (2021).
    Using Word Embeddings to Deter Intellectual Property Theft through
    Automated Generation of Fake Documents. ACM Transactions on
    Management Information Systems (TMIS), 12(2), 1-22.
    https://haipeng-chen.github.io/files/21tmis-we-forge.pdf
    [14] Dustdar, S., Fern´andez, P., Garc´ıa, J. M., Ruiz-Cort´es, A. (2021). Elastic
    Smart Contracts in Blockchains. IEEE/CAA Journal of Automatica Sinica,
    8(12), 1901-1912 https:
    //www.ieee-jas.net/en/article/doi/10.1109/JAS.2021.1004222
    [15] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han and F. -Y. Wang,
    ”Blockchain-Enabled Smart Contracts: Architecture, Applications, and
    Future Trends,” in IEEE Transactions on Systems, Man, and Cybernetics:
    Systems, vol. 49, no. 11, pp. 2266-2277, Nov. 2019, doi:
    10.1109/TSMC.2019.2895123.
    https://ieeexplore.ieee.org/document/8643084
    [16] Alcaide, A., Palomar, E., Montero-Castillo, J., Ribagorda, A. (2013).
    Anonymous authentication for privacy-preserving IoT target-driven
    applications. Computers Security, 37, 111-123.
    http://www.open-access.bcu.ac.uk/260/
    [17] Ammar, M., Russello, G., Crispo, B. (2018). Internet of Things: A survey
    on the security of IoT frameworks. Journal of Information Security and
    Applications, 38, 8-27 https:
    //iranarze.ir/wp-content/uploads/2018/02/E5779-IranArze.pdf
    [18] Dhillon, P. K., Kalra, S. (2017). A lightweight biometrics-based remote user
    authentication scheme for IoT services. Journal of Information Security and
    Applications, 34, 255-270. https://www.sciencedirect.com/science/
    article/abs/pii/S2214212616301442
    [19] Dorri, A., Kanhere, S. S., Jurdak, R., Gauravaram, P. (2017). Blockchain
    for IoT security and privacy: The case study of a smart home. Paper
    presented at the 2017 IEEE international conference on pervasive computing
    and communications workshops (PerCom workshops).
    https://ieeexplore.ieee.org/document/7917634
    [20] Hammi, M. T., Hammi, B., Bellot, P., Serhrouchni, A. (2018). Bubbles of
    Trust: A decentralized blockchain-based authentication system for IoT.
    Computers Security, 78, 126-142.. https:
    //www.sciencedirect.com/science/article/pii/S0167404818300890
    [21] Khan, M. A., Salah, K. (2018). IoT security: Review, blockchain solutions,
    and open challenges. Future Generation Computer Systems, 82, 395-411.
    https:
    //www.sciencedirect.com/science/article/pii/S0167739X17315765
    [22] Manzoor, A., Liyanage, M., Braeke, A., Kanhere, S. S., Ylianttila, M.
    (2019). Blockchain-based proxy re-encryption scheme for secure IoT data
    sharing. Paper presented at the 2019 IEEE International Conference on
    Blockchain and Cryptocurrency (ICBC).
    https://arxiv.org/ftp/arxiv/papers/1811/1811.02276.pdf
    [23] Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access
    management in IoT. IEEE Internet of Things Journal, 5(2), 1184-1195. .
    https://ieeexplore.ieee.org/document/8306880
    [24] Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A. (2018).
    Blockchain and iot integration: A systematic survey. Sensors, 18(8), 2575.
    https://www.mdpi.com/1424-8220/18/8/2575
    [25] Porambage, P., Schmitt, C., Kumar, P., Gurtov, A., Ylianttila, M. (2014).
    Two-phase authentication protocol for wireless sensor networks in
    distributed IoT applications. Paper presented at the 2014 IEEE Wireless
    Communications and Networking Conference (WCNC).
    https://ieeexplore.ieee.org/document/6952860
    [26] Wang, X., Zha, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K.
    (2019). Survey on blockchain for Internet of Things. Computer
    Communications, 136, 10-29.
    https://ieeexplore.ieee.org/document/8306880
    [27] Xu, R., Chen, Y., Blasch, E., Chen, G. (2018). Blendcac: A
    blockchain-enabled decentralized capability-based access control for iots.
    Paper presented at the 2018 IEEE International Conference on Internet of
    Things (iThings) https://arxiv.org/pdf/1804.09267.pdf
    [28] https://www.kaggle.com/code/rahuldshetty/image-encryption-anddecryption/data https://www.kaggle.com/code/rahuldshetty/
    image-encryption-and-decryption/data
    [29] Figueira, A., Oliveira, L. (2017). The current state of fake news: challenges ´
    and opportunities. Procedia Computer Science, 121, 817-825.
    https://arxiv.org/pdf/1804.09267.pdf
    [30] Girgis, S., Amer, E., Gadallah, M. (2018, December). Deep learning
    algorithms for detecting fake news in online text. In 2018 13th international
    conference on computer engineering and systems (ICCES) (pp. 93-97).
    IEEE. https://arxiv.org/pdf/1804.09267.pdf
    [31] Yu, Y., Si, X., Hu, C., Zhang, J. (2019). A review of recurrent neural
    networks: LSTM cells and network architectures. Neural computation,
    31(7), 1235-1270. https://arxiv.org/pdf/1804.09267.pdf
    [32] R. Dey and F. M. Salem, ”Gate-variants of Gated Recurrent Unit (GRU)
    neural networks,” 2017 IEEE 60th International Midwest Symposium on
    Circuits and Systems (MWSCAS), 2017, pp. 1597-1600, doi:
    10.1109/MWSCAS.2017.8053243.
    https://arxiv.org/pdf/1804.09267.pdf
    [33] Fraga-Lamas, P., Fern´andez-Caram´es, T. M. (2020). Fake news,
    disinformation, and deepfakes: Leveraging distributed ledger technologies
    and blockchain to combat digital deception and counterfeit reality. IT
    Professional, 22(2), 53-59.
    https://ieeexplore.ieee.org/abstract/document/9049288
    [34] Cherubini, M., De Oliveira, R., Oliver, N. (2009, October). Understanding
    near-duplicate videos: a user-centric approach. In Proceedings of the 17th
    ACM international conference on Multimedia (pp. 35-44).
    https://dl.acm.org/doi/abs/10.1145/1631272.1631280
    [35] Ramadhan, H. F., Putra, F. A., Sari, R. F. (2021, October). News
    Verification using Ethereum Smart Contract and Inter Planetary File
    System (IPFS). In 2021 13th International Conference on Information
    Communication Technology and System (ICTS) (pp. 96-100). IEEE.
    https://ieeexplore.ieee.org/abstract/document/9646438
    [36] Ramachandran, G., Nemeth, D., Neville, D., Zhelezov, D., Yal¸cin, A.,
    Fohrmann, O., Krishnamachari, B. (2020, November). WhistleBlower:
    towards A decentralized and open platform for spotting fake news. In 2020
    IEEE International Conference on Blockchain (Blockchain) (pp. 154-161).
    IEEE. https://ieeexplore.ieee.org/abstract/document/9284670
    [37] Behera, A., Nayak, B. K., Subhadarshan, S., Nath, N. (2022). CryptedWe:
    An End-to-Encryption with Fake News Detection Messaging System. In
    Biologically Inspired Techniques in Many Criteria Decision Making (pp.
    107-117). Springer, Singapore.
    https://link.springer.com/chapter/10.1007/978-981-16-8739-6_9
    [38] Singhal, S., Shah, R. R., Chakraborty, T., Kumaraguru, P., Satoh, S. I.
    (2019, September). Spotfake: A multi-modal framework for fake news
    detection. In 2019 IEEE fifth international conference on multimedia big
    data (BigMM) (pp. 39-47). IEEE.
    https://ieeexplore.ieee.org/abstract/document/8919302
    [39] Antoun, W., Baly, F., Achour, R., Hussein, A., Hajj, H. (2020, February).
    State of the art models for fake news detection tasks. In 2020 IEEE
    international conference on informatics, IoT, and enabling technologies
    (ICIoT) (pp. 519-524). IEEE. https://doi.org/10.1117/12.2646927
    [40] Dannen, C. (2017). Solidity programming. In Introducing Ethereum and
    solidity (pp. 69-88). Apress, Berkeley, CA.
    https://link.springer.com/book/10.1007/978-1-4842-2535-6
    [41] Rust Programming Language, https://www.rust-lang.org/,
    journal=Rust Programming Language
    [42] Yasin, A., Liu, L. (2016, June). An online identity and smart contract
    management system. In 2016 IEEE 40th Annual Computer Software and
    Applications Conference (COMPSAC) (Vol. 2, pp. 192-198). IEEE. https:
    //ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7552202
    [43] Dylag, M., Smith, H. (2021). From cryptocurrencies to cryptocourts:
    blockchain and the financialization of dispute resolution platforms.
    Information, Communication Society, 1-16. https:
    //www.tandfonline.com/doi/full/10.1080/1369118X.2021.1942958
    [44] Mahjabin, T., Xiao, Y., Sun, G., Jiang, W. (2017). A survey of distributed
    denial-of-service attack, prevention, and mitigation techniques. International
    Journal of Distributed Sensor Networks, 13(12), 1550147717741463.
    https://journals.sagepub.com/doi/full/10.1177/1550147717741463
    [45] Mishra, A. R., Panchal, V. K. (2022). A novel approach to capture the
    similarity in summarized text using embedded model. International Journal
    on Smart Sensing and Intelligent Systems, 15(1), 1-20.
    https://sciendo.com/it/article/10.21307/ijssis-2022-0002
    [46] Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A. (2018).
    Blockchain and iot integration: A systematic survey. Sensors, 18(8), 2575.
    https://www.mdpi.com/1424-8220/18/8/2575
    [47] Buterin, V. (2016). What is ethereum?. Ethereum Official webpage.
    Available: http:
    //www.ethdocs.org/en/latest/introduction/what-is-ethereum.html.

    [48] Singh, B., Sharma, D. K. (2021). Predicting image credibility in fake news
    over social media using multi-modal approach. Neural Computing and
    Applications, 1-15.
    https://link.springer.com/article/10.1007/s00521-021-06086-4
    [49] Alfrhan, A., Moulahi, T., Alabdulatif, A. (2021). Comparative study on
    hash functions for lightweight blockchain in Internet of Things (IoT).
    Blockchain: Research and Applications, 2(4), 100036 https:
    //www.sciencedirect.com/science/article/pii/S2096720921000312
    [50] Huang, J., Kong, L., Chen, G., Wu, M. Y., Liu, X., Zeng, P. (2019).
    Towards secure industrial IoT: Blockchain system with credit-based
    consensus mechanism. IEEE Transactions on Industrial Informatics, 15(6),
    3680-3689. https://ieeexplore.ieee.org/abstract/document/8661654
    [51] St´erin, T., Farrugia, N., Gripon, V. (2017). An intrinsic difference between
    vanilla rnns and gru models. COGNTIVE, 84, 2017.
    [52] G. Almashaqbeh, A. Bishop and J. Cappos, ”ABC: A
    Cryptocurrency-Focused Threat Modeling Framework,” IEEE INFOCOM
    2019 - IEEE Conference on Computer Communications Workshops
    (INFOCOM WKSHPS), 2019, pp. 859-864, doi:
    10.1109/INFCOMW.2019.8845101.
    https://ieeexplore.ieee.org/abstract/document/8845101
    [53] Khan, R., McLaughlin, K., Laverty, D., Sezer, S. (2017, September).
    STRIDE-based threat modeling for cyber-physical systems. In 2017 IEEE
    PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)
    (pp. 1-6). IEEE.
    https://ieeexplore.ieee.org/abstract/document/8260283

    QR CODE