簡易檢索 / 詳目顯示

研究生: 林欣霈
Hsin-Pei Lin
論文名稱: 新型多芽基螢光感測分子之合成與光誘發黃嘌呤氧化酶作用機制之研究
Newly design of fluorescence sensors and photoinduced catalytic effect of xanthine oxidase
指導教授: 黃國柱
Kuo-Chu Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 100
中文關鍵詞: 螢光梯度流析二異丙基氨基鋰黃嘌呤氧化酶光誘發光學感測器
外文關鍵詞: Fluorescence, Gradient elution, Lithium diisopropylamide, Xanthine oxidase, XOD, Photoinduced, optical sensor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    用螢光分子作為感測器,當作分子級微觀世界與巨觀世界之間的溝通橋樑,使能更清楚掌握分子的移動、數量、甚至於之間互相作用等分子級的事件,一直是個很有趣的領域。本文第一部份即為此方向感測器的合成與探討,和傳統金屬離子的感測分子結構上包括辨識、連接、訊號三部份最大不同:將辨識直接『建築』在訊號單元上,兩者合為一體。有別於傳統感測分子的設計方向:修飾辨識單元或訊號單元的分子結構提高與待測物間的結合力或增加訊號單元靈敏度兩個主要的設計概念,我們提出利用和金屬離子配位時的軌域混成,改變感測分子的螢光放光強度或放光顏色,以此特性當作金屬離子感測分子。這樣的感測分子設計概念除了在金屬離子中可行外,將它推廣到其他物種的感測分子設計上,將會有所幫助,而且將是個很有趣的發展空間。
    本文第二部份則是對於黃嘌呤氧化酶(XOD)催化行為的研究,並研究其與照光反應之間的關係。其中黃嘌呤氧化酶(XOD)在生物體內催化黃嘌呤氧化為尿酸的反應,與疾病痛風(gout)及缺血-再灌流傷害( Ischemia-reperfusion injury )的產生有密切的關係。在此我們以黃嘌呤氧化酶及其受質之一 6-formylpetrin為研究對象,對此”光誘發催化”現象作了一系列探討,並研究其反應速率加快的原因。


    目錄 目錄………………………………………………………………………I 圖目錄…………………………………………………………………V 表目錄…………………………………………………………………IX 化學符號縮寫………………………………………………………X < 第一部份 新型多芽基螢光感測分子之合成 > 第一章 緒論………………………………………………………1 第一節 前言…………………………………………………………1 第二節 分子辨識…………………………………………………2 第二章 原理與方法………………………………………………5 第一節 螢光………………………………………………………5 2-1.1 螢光原理…………………………………………………5 2-1.2 分子結構與螢光 ……………………………………………26 第二節 螢光感測分子的組成及特性………………………………10 第三節 文獻中各種光學感測器(optical sensor)的設計…………17 2-3.1 陽離子的偵測……………………………………………17 2-3.2 陰離子的偵測……………………………………………18 2-3.3 螢光感測分子訊號傳遞方式………………………………19 第三章 結果與討論……………………………………………………23 第一節 金屬離子感測螢光分子之合成 …………………………… 23 3-1.1 Bis-1,10-phenanthroline-2,9-dicarboxylic acid(5) 之合成 ……………………………………………………23 (a) 二異丙基氨基鋰(lithium diisopropylamide)…………………23 (b) 1,10-phenanthroline-2,9-dicarboxylic acid(9)之合成…………25 3-1.2 Sensor 2.之合成………………………………………………27 (a) Methoxypoly(ethylene oxide)Tosylate(PEO-300 Tosylate)(7) ………………………………………………………………27 (b) Methoxypoly(ethylene oxide) Iodide(PEO-300 Iodide)(8) ………………………………………………………………29第二節 感測分子光物理性質之探討 ……………………………30 3-2.1 1,10-phenanthroline-2,9-dicarboxylic acid(9)………………30 3-2.2 Bis-1,10-phenanthroline-2,9-dicarboxylic acid(5) …………33 第四章 結論……………………………………………………………36 第五章 實驗部份(合成步驟與光譜數據)…………………………38 第六章 參考文獻………………………………………………………43 < 第二部份 新型多芽基螢光感測分子之合成 > 第一章 緒論………………………………………………………45 第一節 前言…………………………………………………………45 第二節 酵素簡介……………………………………………………47 1-2.1黃嘌呤氧化酶 ………………………………………………47 1-2.2黃嘌呤氧化酶相關疾病……………………………………51 1-2.3 受質簡介( 6-Formylpterin ) ………………………………58 第三節 光調控酵素反應機制………………………………………60 第二章 原理與方法………………………………………………64 第一節 受質之電子吸收光譜(UV-visible spectra of substrates)…64 第二節 動力學反應速率常數的測量……………………………66 第三節 黃嘌呤氧化酶濃度與活性測定方式………………………67 (a) 黃嘌呤氧化酶濃度測定………………………………………67 (b) 黃嘌呤氧化酶活性的測定—AFR method……………………68 第四節 氘化與同位素效應(Kinetic Isotope Effect Studay)………69 第三章 結果與討論……………………………………………………72 第一節 光誘發黃嘌呤氧化酵素催化………………………………72 3-1.1 照光對於[XOD-6FP]錯合物吸收光譜影響……………72 3-1.2 單一光源的取得……………………………………………72 3-1.3 照光對於[XOD-6FP]錯合物解離影響……………………73 3-1.4 照光對於[XOD-6FP]反應速率影響………………………75 第二節 合成部分……………………………………………………79 3-2.1 6-Formylpetrin 之合成與鑑定……………………………79 3-2.2 6-Formylpetrin 之氘化與鑑定……………………………80 第三節 受質氘化對反應催化之影響 ………………………………82 第四節 反應催化中形成席夫鹼 ……………………………………90 3-4.1 硼氫化鈉對於酵素活性的影響 ……………………………90 3-4.2 照光對酵素催化同位素效應的影響 ………………………92 第四章 結論……………………………………………………………95 第五章 參考文獻………………………………………………………97 附錄……………………………………………………………………100

    PART(1)

    1. Prodi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Coord. Chem.
    Rev. 2000, 205, 59-83.
    2. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3-40.
    3. Masilamani, D.; Lucas, M. E. In Fluorescent Chemosensors for
    Ion and Molecule Recognition; Czarnik, A. W., Ed.; American
    Chemical Society: Washington, DC, 1992.
    4. Godwin, H. A. Curr. Opin Chem. Biol. 2001, 5, 223-227.
    5. Lu, Y. Chem. Eur. J. 2002, 8, 4588-4596.
    6. 20. Dobson, S. Cadmium-Environmental Aspect; World Health
    Organization: Geneva, 1992.
    7. Lakowicz, J. R. Principles of Fluorescence Spectroscopy 2nd , Kluwer Academic / Plenum, New York. 1999.
    8. Görner, H.; Kuhn, H. J. Adv. Photochem. 1995, 19, 1-117.
    9. Bernard Valeur, Isabelle Leray, Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 2000, 205, 3-40.
    10. A. P. Bisson, V. M. Lynch, M. K. C. Monahan, E. V. Anslyn, Angew. Chem. Int. Ed. Engl. 1997, 36, 2340.
    11. X. Yang, C. B. Knobler, M. F. Hawthorne, Angew. Chem. Int. Ed. Engl. 1991, 30, 1507.
    12. F. Diederich, D. Griebel,.J. Am. Chem. Soc. 1984, 106, 8037-8046.
    13. Gale, P. A. Coord. Chem. Rev. 2000, 199, 181.
    14. Beer, P. D.; Gale, P. A. Angew. Chem. Int. Ed. 2001, 40, 486.
    15. J. Am. Chem. Soc. 1996, 118, 5740-5741.
    16. A. P. Bisson, V. M. Lynch, M. K. C. Monahan, E. V. Anslyn, Angew. Chem. Int. Ed. Engl. 1997, 36, 2340.
    17. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515-1567.
    18. Bernhard, S., Takada, K., Jenkins, D., Abruna, H. D., Inorg. Chem. 2002, 41(4), 765-772.
    19. Moghimi, A., Alizadeh, R., Shokrollahi, A., Aghabozorg, H., Shamsipur, M., Shockravi, A., Inorg. Chem., 2003, 42(5), 1616-1624.
    20. Mark C. McCairn, Stephen R. Tonge, and Andrew J. Sutherland, J.
    21.Yi-Zhen Hu, Qin Xiang, and Randolph P. Thummel, Inorganic Chemistry. 2002, 41, 3423-3428.
    22. Didier Pomeranc, Vale´rie Heitz, Jean-Claude Chambron, and Jean-Pierre Sauvage, J. Am. Chem. Soc. 2001, 123, 12215-12221
    23. Christine Goze, Jean-Claude Chambron, Vale´rie Heitz, Didier Pomeranc, Xavier J. Salom-Roig, Jean-Pierre Sauvage, Angeles Farra´n Morales, and Francesco Barigelletti, Eur. J. Inorg. Chem. 2003, 3752-3758.
    24. (a) McClure, D. S. J. Chem. Phys. 1952, 20, 682-686. (b) Varnes, A. W., Dodson, R. B., Wehry, E. L. J. Am. Chem. Soc. 1972, 94,
    946-950.

    PART(2)

    1. (a) D. H. Hug, “Photoacyivation of Enzymes” in: Photochemical and photobiological Reviews. (K. C. Smith, ed.) 1981, chap. 3.
    2. T. P. Begley, Acc. Chem. Res. 1994, 27, 394-401.
    3. M. Odaka, K. Fujii, M. Hoshino, T. Noguchi, M. Tsujimura, S. Nagashima, M. Yohda, T. Nagamune, Y. Inoue, I. Endo, J. Am. Chem. Soc. 1997, 119, 3785-3791.
    4. D. H. Hug, P. S. O’Donnell, J. K. Hunter, J. Biol. Chem. 1978, 251, 7622-7629.
    5. A. D. Turner, S. V. Pizzo, G. Rozakis, N. A. Porter, J. Am. Chem. Soc. 1988, 110, 244-250.
    6. (a) I. Willner, S. Rubin, Angew, Chem. Int. Ed. Engl. 1996, 35, 367-385. (b) P. R. Westmark, J. P. Kelly, B. D. Smith, J. Am. Chem. Soc. 1993, 115, 34116-3419.
    7. Hill, R., and Nishino, T., FASEB. J. 1995, 9, 995.
    8. Hill, R., Chem. Rev. 1996, 96, 2757.
    9. Massey, V., Brumby, P. E., Komai, H., and Palmer, G., J. Biol. Chem. 1969, 244, 1682.
    10. Hart, L. I., McGartoll, M. A., Chapman, H. R., and Bray, R. C., Biochem. J. 1970, 116, 851.
    11. Edmondson, D., Massey, V., Palmer, G., Beacham, L. M., and Elion. G.B., 1972, 247, 1597-1604.
    12. L. Stryer, “Biochemistry”, Fourth ed. Chap. 29, p756.
    13. http://www.zx.gov.tw/phr/phr046.htm中興藥訊第二十期
    14. L. Stryer, “Biochemistry”, Fourth ed. Chap. 10, p237~239.
    15. L. Stryer, “Biochemistry”, Fourth ed. Chap. 7, p157.
    16. B. Halliwell, “Free radical in Biological and Medicine”, chap. 8.
    17. Oettl, K.; Reibneggar, G. Pteridines as inhibitors of xanthine
    oxidase: structural requirements. Biochim. Biophys. Acta. 1999, 1430
    387–395.
    18. Palfey, B. A.; Ballou, D. P.; Massey, V. Oxygen activation by
    flavins and pterins. In: Valentine, J. S.; Foote, C. S.; Greenberg,
    A.; Liebman, J. F., eds. Active oxygen in biochemistry. London:
    Blackie Academic & Professional; 1995, 37– 83.
    19. 戴麟靄,”Substrates-regulated enzyme activity—interactions between the homodimer units of xanthine oxidase”,清華大學博士論文,2003,黃國柱教授
    20. Massey, V., Komai, H., Palmer, G., and Elion, G. B., J. Biol. Chem. 1970, 245, 2837-2844.
    21. Avis, P. G., Bergal, P., and Bray, B. C., J. Chem. Soc. 1955, 1100.
    22. Christopher M. Harris and Vincent Massey, The Journal of Biological Chemistry 1997, 272, 22514-22525.
    23. Russ Hille, Biochemistry 1991, 30, 8522-8529.
    24 Susan C. D’Ardenne and Dale E. Edmondson, Biochemistry, 1990, 29, 9046-9052.
    25. Jacqueline J. Vermeersch, Serge Christmann-Franck, Leon V. Karabashyan, Serge Fermandjian, Gilles Mirambeau and P. Arse`ne Der Garabedian, Nucleic Acids Research, 2004, 32, 5649–5657.
    26. Dae Won Kim, Joung Woo Hong, Won Sik Eum, Hee Soon Choi, Soo Hyun Choi, So Young Kim, Byung Ryong Lee, Jae Jin An, Sun Hwa Lee, Seung Ree Lee, Oh-Shin Kwon, Hyeok Yil Kwon, Sung-Woo Cho, Kil Soo Lee, Jinseu Park and Soo Young Choi, Journal of Biochemistry and Molecular Biology, 2005, 38, 58-64.
    27. Dawei Chen and Perry A. Frey, Biochemistry, 2001, 40, 596-602.
    28.Takashi Fukuda, Fuminori Sakamoto, Minoru Sato, Yoshiharu Nakano, Xiang Shi Tan and Yuki Fujii, Chem. Commun., 1998, 1391- 1392.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE