研究生: |
周冠宇 Chou, Kuan-Yu |
---|---|
論文名稱: |
應用於電阻式記憶體之氧化鋅薄膜製程與元件特性研究 Study on the fabrication and device characteristics of ZnO thin films for resistance random access memory applications |
指導教授: |
林樹均
Lin, Su-Jien 闕郁倫 Chueh, Yu-Lun |
口試委員: |
張文淵
Chang, Wen-Yuan 林樹均 Lin, Su-Jien 闕郁倫 Chueh, Yu-Lun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 氧化鋅 、電阻式記憶體 、疊層結構 、磁控濺鍍 |
外文關鍵詞: | ZnO, RRAM, stacking structure, RF sputtering |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用射頻磁控濺鍍(radiofrequency magnetron sputtering, RF sputtering)成功的製作出白金/氧化鋅/白金(Pt/ZnO/Pt)電阻式記憶體,此結構可展現穩定的單極性電阻轉換效應,高電阻態(high resistance state, HRS)與低電阻態(low resistance state, LRS)的阻值比可達到一個數量級以上供邏輯訊號應用。在改變厚度的實驗中,厚度為100 nm的氧化鋅薄膜的電阻轉換特性效果最佳;而在改變鍍膜電漿氣氛來改善氧化鋅薄膜的實驗中,氧氣比例為10%的氧化鋅薄膜的電阻轉換特性效果最佳,可提升高低阻態的比值以及提高元件穩定度。第二個實驗的部分加入原子層沉積(atomic layer deposition, ALD)的鍍膜方式所製作出的疊層結構元件,在sputter氧化鋅下方沉積不同阻值的ALD ZnO及Al2O3來觀察電阻轉換效應的改變,發現加入Al2O3的疊層結構同樣呈現單極性電阻轉換效應且可提升元件高阻值。從兩個實驗中不同結構在不同參數下的低阻態均未有明顯改變的結果可推論出本實驗製作出的氧化鋅電阻式記憶體屬於金屬導電細絲(filament model)的傳導機制。
1. Evalueserve, Non-Volatile Memory Markets. BCC Research July, 2005. SMC060A.
2. Innovative Research and Products (iRAP), I., Advanced Solid-state Memory Systems And Products: Emerging Non-volatile Memory Technologies, Industry Trends And Market Analysis April 2011.
3. Sawa, A., Resistive switching in transition metal oxides. Materials Today, Jun, 2008. 11(6): p. 28-36.
4. Tsai, J.M., Resistance switching characteristics in ZnO thin films for nonvolatile random access memory applications. Master thesis, National Tsing Hua University, July, 2008.
5. Chang, W.Y., et al., Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Applied Physics Letters, Jan, 2008. 92(2): p. 3.
6. Chen, Y.T., Atomic Layer Deposition of HfON Thin Film for Charge Trapping Flash Memory Application. Master thesis, National Tsing Hua University, July 2009.
7. Muller, C., Emerging Concepts in Non-volatile Memory Technologies – Era of Resistance Switching Memories. ISVLSI ’08. IEEE Computer Society Annual, April 2008.
8. http://encyclopedia2.thefreedictionary.com/static+RAM.
9. http://encyclopedia2.thefreedictionary.com/dynamic+RAM.
10. http://en.wikipedia.org/wiki/Flash_memory.
11. Lin, C.H., Study on the resistive switching characteristics of atomic layer deposition HfO2 film with Ti interlayers. Master thesis, National Tsing Hua University, July 2010.
12. Gerhard Muller, T.H., Micheal Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, Status and outlook of emerging nonvolatole memory technologies. IEEE, 2004.
13. 簡昭欣、呂正傑、陳志遠、張茂南、許世祿、趙天生, 先進記憶體簡介. 國研科技創刊號.
14. http://en.wikipedia.org/wiki/Random_access_memory.
15. 劉志益、曾俊元, 電阻式非揮發記憶體之近期發展.
16. Li, D.B. and D.A. Bonnell, Controlled patterning of ferroelectric domains: Fundamental concepts and applications. Annual Review of Materials Research, 2008. 38: p. 351-368.
17. G. Muller, e.a., Emerging Non-volatile Memory Technologies. Solid-State Circuits Conference, ESSCIRC '03, Sep, 2003: p. 37-44.
18. Hoberman, B., The Emergence of Practical MRAM. Crocus Technologies.
19. 葉林秀、李佳謀、徐明豐、吳德和. 物理雙月刊. Vol. 廿六卷四期. 2004. 607-619.
20. Chang, W.Y., Characteristics of (Pr,Ca)MnO3 thin films on LaNiO3-electrodized Si substate for nonvolatile resistance random access memory application. Master thesis, National Tsing Hua University, July, 2006.
21. 余昭倫, 縱觀新世代記憶體-相變化記憶(PCRAM). Digitimes 技術 IT, 2006.
22. I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses. IEDM Tech. Dig., 2004.
23. Lee, H.Y., et al., Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM, in Ieee International Electron Devices Meeting 2008, Technical Digest. 2008. p. 297-300.
24. Myoung-Jae, L., et al. 2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications. in Electron Devices Meeting, 2007. IEDM 2007. IEEE International. 2007.
25. Liu, S.Q., N.J. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Applied Physics Letters, 2000. 76(19): p. 2749-2751.
26. Sawa, A., et al., Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2004. 85(18): p. 4073-4075.
27. Beck, A., et al., Reproducible switching effect in thin oxide films for memory applications. Applied Physics Letters, 2000. 77(1): p. 139-141.
28. Asamitsu, A., et al., Current switching of resistive states in magnetoresistive manganites. Nature, 1997. 388(6637): p. 50-52.
29. Rossel, C., et al., Electrical current distribution across a metal-insulator-metal structure during bistable switching. Journal of Applied Physics, 2001. 90(6): p. 2892-2898.
30. Ma, L.P., et al., Organic bistable light-emitting devices. Applied Physics Letters, 2002. 80(3): p. 362-364.
31. Ma, L.P., et al., Organic bistable light-emitting devices (vol 80, pg 362, 2002). Applied Physics Letters, 2002. 80(16): p. 3018-3018.
32. Ma, L.P., J. Liu, and Y. Yang, Organic electrical bistable devices and rewritable memory cells. Applied Physics Letters, 2002. 80(16): p. 2997-2999.
33. Seo, S., et al., Reproducible resistance switching in polycrystalline NiO films. Applied Physics Letters, 2004. 85(23): p. 5655-5657.
34. 張文淵、吳泰伯, 奈米記憶體之新星--電阻式記憶體.
35. Chang, W.Y., Fabrication and device characteristic of oxide thin film forresistance random access memory applications. Doctor thesis, National Tsing Hua University, 2010: p. 180.
36. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nature Materials, 2007. 6(11): p. 833-840.
37. Kim, S. and Y.K. Choi, A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM. Ieee Transactions on Electron Devices, 2009. 56(12): p. 3049-3054.
38. Chen, M.C., et al., Bipolar Resistive Switching Characteristics of Transparent Indium Gallium Zinc Oxide Resistive Random Access Memory. Electrochemical and Solid State Letters, 2010. 13(6): p. II191-II193.
39. Waser, R., et al., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 2009. 21(25-26): p. 2632-+.
40. Park, G.-S., et al., Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters, 2007. 91(22): p. 222103.
41. Russo, U., et al., Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices. Electron Devices, IEEE Transactions on, 2009. 56(2): p. 193-200.
42. Russo, U., et al., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. Electron Devices, IEEE Transactions on, 2009. 56(2): p. 186-192.
43. Yang, Y.C., et al., Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application. Nano Letters, 2009. 9(4): p. 1636-1643.
44. Schindler, C., et al. Resistive switching in Ag-Ge-Se with extremely low write currents. in Non-Volatile Memory Technology Symposium, 2007. NVMTS '07. 2007.
45. Kim, Y.-M. and J.-S. Lee, Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices. Journal of Applied Physics, 2008. 104(11): p. 114115.
46. Kinoshita, K., et al., Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide. Applied Physics Letters, 2006. 89(10): p. 103509.
47. Baikalov, A., et al., Field-driven hysteretic and reversible resistive switch at the Ag-Pr0.7Ca0.3MnO3 interface. Applied Physics Letters, 2003. 83(5): p. 957-959.
48. Tsui, S., et al., Field-induced resistive switching in metal-oxide interfaces. Applied Physics Letters, 2004. 85(2): p. 317-319.
49. Chen, X., et al., Direct resistance profile for an electrical pulse induced resistance change device. Applied Physics Letters, 2005. 87(23).
50. Fujii, T., et al., Hysteretic current--voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Applied Physics Letters, 2005. 86(1): p. 012107.
51. Fors, R., S.I. Khartsev, and A.M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Physical Review B, 2005. 71(4): p. 045305.
52. Rozenberg, M.J., I.H. Inoue, and M.J. Sanchez, Strong electron correlation effects in nonvolatile electronic memory devices. Applied Physics Letters, 2006. 88(3): p. 033510.
53. Hwang, I., et al., Resistive switching transition induced by a voltage pulse in a Pt/NiO/Pt structure. Applied Physics Letters, 2010. 97(5).
54. http://staff.aist.go.jp/nomura-k/english/itscgallary-e.htm.
55. Tokura, Y. and Y. Tomioka, Colossal magnetoresistive manganites. Journal of Magnetism and Magnetic Materials, 1999. 200(1-3): p. 1-23.
56. Zhuang, W.W., et al., Novell Colossal Magnetoresistive thin film nonvolatile resistance random access memory (RRAM). International Electron Devices 2002 Meeting, Technical Digest. 2002, New York: Ieee. 193-196.
57. Scott, J.C. and L.D. Bozano, Nonvolatile memory elements based on organic materials. Advanced Materials, 2007. 19(11): p. 1452-1463.
58. Yang, M.K., et al., Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Applied Physics Letters, 2009. 95(4).
59. Wang, S.Y., et al., Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films. Applied Physics Letters, 2009. 95(11).
60. Kim, S., et al., Comprehensive modeling of resistive switching in the Al/TiOx/TiO2/Al heterostructure based on space-charge-limited conduction. Applied Physics Letters, 2010. 97(3).
61. Huang, H.-H., W.-C. Shih, and C.-H. Lai, Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Applied Physics Letters, 2010. 96(19): p. 193505-3.
62. Riihela, D., et al., Introducing atomic layer epitaxy for the deposition of optical thin films. Thin Solid Films, 1996. 289(1-2): p. 250-255.
63. Matero, R., et al., Effect of water dose on the atomic layer deposition rate of oxide thin films. Thin Solid Films, 2000. 368(1): p. 1-7.
64. Nalwa, H.S., Handbook of thin film materials : Vol. 1 Deposition and processing of thin films. Academic Press, 2002.
65. Houssa, M., High-k Gate Dielectrics. Institute of Physics, 2004.
66. S. Haukka, E.-L., and T. untola, Analysis of hydroxyl group controlled atomic layer deposition of hafnium precursors dioxide from hafnium tetrachloride and water. Journal of Applied Physics, 2004. 95(4777).
67. Chen, Y.H., Effects of Different Locations of La2O3 in HfO2/La2O3/HfO2 Stacks on Electrical and Material Properties. Master thesis, National Tsing Hua University, July, 2010.
68. Kim, K.M., D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011. 22(25).