簡易檢索 / 詳目顯示

研究生: 陳立人
論文名稱: 保密性波束成形技術在多輸入單輸出且傳送端僅具通道方向資訊的情況下之最佳性探討
On the Optimality of Secrecy Beamforming in the Multiple-Input Single-Output Single-Antenna Eavesdropper Scenario with Only Channel Direction Information at the Transmitter
指導教授: 洪樂文
口試委員: 洪樂文
李佳翰
林士駿
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 保密性波束成形技術通道方向資訊
外文關鍵詞: Secrecy, beamforming, channel direction information
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討保密性波束形成技術在多輸入單輸出且傳送端僅具通道方向資訊的情況下的最佳性。在之前的成果中,已經發現如果輸入端的共變異矩陣的rank為1,那麼由Khisti等人所導出的保密性通道容量上界就可以被一個使用高斯波束形成技術的保密傳輸速率所達到,也就是說該保密傳輸速率為最大的速率。因此根據上述結果,我們想要從數學上和數值上兩個角度切入去驗證rank-1的輸入端的共變異矩陣對該上界來說是不是一個最佳解。在這篇論文中,我們從數學上證明了在一些特別的情況下,rank-1的輸入端共變異矩陣的確是一個最佳解。在一般性的情況下,我們則是使用數值解(也就是interior point algorithm)的方式去驗證,而這個演算法在目標問題是convex-concave問題時才能保證其解的最佳性。最後我們根據模擬結果畫出上界和下界的比較結果。


    Abstract i Contents ii 1 Introduction 1 2 System Model and Review of Prior Work 5 3 Property of the Secrecy Capacity Upper Bound 12 3.1 Unit Rank Input Covariance is Optimal for Upper Bound in Special Cases . 15 4 Saddle-Point Solution of the Secrecy Capacity Upper Bound Based on Interior Point Algorithm 20 5 Simulation Result 31 6 Conclusion 40

    [1] A. D. Wyner, “The wiretap channel,” Bell Syst. Tech. J., vol. 54, pp. 1355–1387, 1975.
    [2] S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wiretap channel,” IEEE
    Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, July 1978.
    [3] I. Csisz´ar and J. Korner, “Broadcast channels with confidential messages,” IEEE Trans.
    Inf. Theory, vol. 24, no. 3, pp. 339–348, 1978.
    [4] T. Liu and S. Shamai, “A note on the secrecy capacity of the multiple-antenna wiretap
    channel,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2547–2553, JUNE 2009.
    [5] H. V. P. R. Bustin, R. Liu and S. Shamai, “An MMSE approach to the secrecy capacity
    of the MIMO Gaussian wiretap channel,” in Proc. IEEE Int. Symp. Information Theory,
    July. 2009, pp. 2602–2606.
    [6] A. Khisti and G. W. Wornell, “Secure transmission with multiple antennas-I: the MISOME
    wiretap channel,” IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3088–3104, Jul.
    2010.
    [7] ——, “Secure transmission with multiple antennas-II: the MIMOME wiretap channel,”
    IEEE Trans. Inf. Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.
    [8] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap channel,” IEEE
    Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972, Aug. 2011.
    [9] S. Shafiee and S. Ulukus, “Achievable rates in Gaussian MISO channels with secrecy
    constraints,” IEEE Trans. Inf. Theory, pp. 2466–2470, Jun. 2007.
    [10] J. Li and A. Petropulu, “Optimal input covariance for achieving secrecy capacity in
    Gaussian MIMO wiretap channels,” in Proc. IEEE Int. Workshop Information Forensics
    and Security (WIFS), Tenerife, Spain, Mar. 2010, pp. 3362–3365.
    [11] S. Shafiee and S. Ulukus, “Towards the secrecy capacity of the Gaussian MIMO wire-tap
    channel: the 2-2-1 channel,” IEEE Trans. Inf. Theory, vol. 55, no. 9, pp. 4033–4039,
    Sept. 2009.
    [12] J. Li and A. Petropulu, “Optimality of beamforming for secrecy capacity MIMO wiretap
    channels,” in 2012 IEEE International Workshop on Information Forensics and Security
    (WIFS), Dec. 2012, pp. 276–281.
    [13] S.-C. Lin, T.-H. Chang, Y.-L. Liang, Y.-W. P. Hong, and C.-Y. Chi, “On the impact
    of quantized channel feedback in guaranteeing secrecy with artificial noise: The noise
    leakage problem,” IEEE Trans. on Wireless Commun., vol. 10, no. 3, pp. 901–915, Mar.
    2011.
    [14] S.-C. Lin, L.-R. Chen, and Y.-W. P. Hong, “On the optimality of secrecy beamforming
    in multiple-input single-output single-antenna eavesdropper scenarios with only channel
    direction information at the transmitter.”
    [15] P. Gopala, L. Lai, and H. El Gamal, “On the secrecy capacity of fading channels,” IEEE
    Trans. Inf. Theory, vol. 54, no. 10, pp. 4687–4698, 2008.
    [16] S. A. Jafar and A. J. Goldsmith, “Isotropic fading vector broadcast channels: The scalar
    upperbound and loss in degrees of freedom,” IEEE Trans. Inform. Theory, vol. 51, pp.
    848–857, 2005.
    [17] A. N. Dimitri P. Bertsekas and A. E. Ozdaglar, Convex Analysis and Optmization.
    Athena Scientific, 2003.
    [18] R. Hunger, Analysis and Transceiver Design for the MIMO Broadcast Channel.
    Springer, 2013.
    [19] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink with
    per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, June 2007.
    [20] H. C. P. H. Huh and G. Caire, “Multiuser MISO transmitter optimization for intercell
    interference mitigation,” IEEE Trans. Signal Process., vol. 58, pp. 4272 – 4285, Aug.
    2010.
    [21] M. Payaro and D. P. Palomar, “Hessian and concavity of mutual information, differential
    entropy, and entropy power in linear vector Gaussian channels,” IEEE Trans. Inf.
    Theory, vol. 55, no. 8, Aug. 2009.
    [22] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting over fading channels,”
    IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2453–2469, Jun. 2008.
    [23] D. A. Harville, Matrix Algebra From a Statistician's Perspective, second edition ed.
    Springer, 2008.
    [24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, UK: Cambridge University
    Press, 1999.
    [25] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK: Cambridge
    University Press, 2004.
    [26] A. Hjørungnes, Complex-Valued Matrix Derivatives. Cambridge University Press,
    2011. [Online]. Available: http://dx.doi.org/10.1017/CBO9780511921490

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE